
The Distributed Systems
Foundations of Managing Data in

the Cloud

Amr El Abbadi

University of California,

Santa Barbara

Evolution of computing history

• Main Frame with terminals

• Network of PCs & Workstations.

• Client-Server

• Now, moving forward to

Large cloud.

2 NETYS 2013 Morocco

Cloud Computing: Why Now?

• Experience with very large datacenters
– Unprecedented economies of scale

– Transfer of risk

• Technology factors
– Pervasive broadband Internet

– Maturity in Virtualization Technology

• Business factors
– Economies of Scale

– Pay-as-you-go billing model

NETYS 2013 Morocco 3

Unused resources

Cloud’s Promise: Elasticity

• Pay per use instead of provisioning for peak

Traditional Infrastructures Deployment in the Cloud

Demand

Capacity

Time

R
es

o
u

rc
es

Demand

Capacity

Time

R
es

o
u

rc
es

Slide Credits: Berkeley RAD Lab

4 Sydney March 2012

NETYS 2013 Morocco 5

Cloud Reality: Elasticity

• Wikipedia has over 3.5 million pages.
• Yahoo! 650M+ unique user, 11B page visits/month
• Flickr members uploaded over 5 billion photos

• Facebook:1Billion users,1.13 Trillion "likes", 219Billion

photos and 140.3 Billion friendships.

• You Tube: 35 hours of videos uploaded each min.
• “more video uploaded to YouTube in the past two

months than there would have been if ABC, CBS, and
NBC had been airing 24/7 since 1948!”

 NETYS 2013 Morocco 6

Explosive Data growth

Cloud Properties

• Commodity hardware

• Large Scale

• Elasticity

7 NETYS 2013 Morocco

App
Server

App
Server

App
Server

Elasticity in the Cloud

NETYS 2013 Morocco

Load Balancer (Proxy)

App
Server

Client Site

App
Server

Client Site Client Site

8

Why does this work?

• As long as requests are stateless, we can add
more resources, thus providing:

•Scale

•Elasticity

9 NETYS 2013 Morocco

But, most services need DATA!

• Challenges:

–How to scale with the increasing
amounts of data

–Where to store the data

–Accessing data on multiple sites

–Failures

10 NETYS 2013 Morocco

Need

• Fault-tolerance:

– Replication

• Large scale data:

– Partition data across multiple servers

• Managing the system state.

• Must understand:

– Database foundations

– Distributed systems foundations.

11 NETYS 2013 Morocco

Main Characteristics of Distributed
Systems

• Independent processors,
sites, processes

• Message passing

• No shared memory

• No shared clock

• Independent failure
modes

NETYS 2013 Morocco 12

Distributed System Models

• Synchronous System: Known bounds on times
for message transmission, processing , bounds
on local clock drifts, etc.

– Can use timeouts

• Asynchronous System: No known bounds on
times for message transmission, processing,
bounds on local clock drifts, etc.

– More realistic, practical, but no timeout.

NETYS 2013 Morocco 13

CAUSALITY AND TIME

NETYS 2013 Morocco 14

What is a Distributed System?

• A simple model of a distributed system
proposed by Lamport in a landmark 1978
paper:

• “Time, Clocks and the Ordering of Events in a
Distributed System” Communications of the
ACM

NETYS 2013 Morocco 15

What is a Distributed System?

• A set of processes that communicate using
message passing.

• A process is a sequence of events

• 3 kinds of events:

– Local events

– Send events

– Receive events

• Local events on a process for a total order.

NETYS 2013 Morocco 16

Example of a Distributed System

NETYS 2013 Morocco 17

Happens Before or Causal Order
on Events

• Event e happens before (causally precedes)
event f, denoted e → f if:

1. The same process executes e before f ; or

2. e is send(m) and f is receive(m); or

3. Exists h so that e → h and h → f

• We define concurrent, e || f, as:
 ¬(e → f  f → e)

NETYS 2013 Morocco 18

Lamport Logical Clocks

• Assign “clock” value to each event

– if ab then clock(a) < clock(b)

• Assign each process a clock “counter”.

– Clock must be incremented between any two
events in the same process

– Each message carries the sender’s clock value

• When a message arrives set local clock to:

– max(local value, message timestamp + 1)

NETYS 2013 Morocco 19

Example of a Logical Clock

NETYS 2013 Morocco 20

Vector clocks
1. Vector initialized to 0 at each process

 Vi [j] = 0 for i, j =1, …, N

2. Process increments its element of the vector
in local vector before event:

 Vi [i] = Vi [i] +1

3. Piggyback Vi with every message sent from
process Pi

4. When Pj receives message, compares vectors
element by element and sets local vector to
higher of two values

 Vj [i] = max(Vi [i], Vj [i]) for i=1, …, N
NETYS 2013 Morocco 21

Comparing vector timestamps

Define

 V = V’ iff V [i] = V’[i] for i = 1 … N
 V  V’ iff V [i]  V’[i] for i = 1 … N

For any two events e, e’

 e  e’ if and only if V(e) < V(e’)

Two events are concurrent if neither

 V(e)  V(e’) nor V(e’)  V(e)

NETYS 2013 Morocco 22

Vector Clock Example

NETYS 2013 Morocco 23

MUTUAL EXCLUSION AND
QUORUMS

NETYS 2013 Morocco 24

Distributed Mutual Exclusion

• Given a set of processes and a single resource,
develop a protocol to ensure exclusive access
to the resource by a single process at a time.

• This is a fundamental operation in operating
systems, and is generalized to locking in
databases.

NETYS 2013 Morocco 25

Centralized Solution

• Choose a special coordinator site, coord.

• Coord maintains a queue of pending requests.

• Protocol:
– Process send request to coord.

– If no other request, coord sends back reply.
• Otherwise, put request in queue

– On receipt of reply, process accesses resource.

– Once done, process sends release to coord.

– On receipt of release, coord checks queue for any
pending requests.

NETYS 2013 Morocco 26

Centralized Solution

P0

C
request(R)

reply(R)

release(R) P1

P2

request(R)

Queue

P1

request(R)

P2

reply(R)

NETYS 2013 Morocco 27

thanks paul krzyzanowski rutgers

Distributed Solution (Lamport ‘78)

• Instead of a central coordinator, all processes
collectively

• Use similar approach:
– Process sends request to all processes and put request

in local queue.
– On receipt of request, process sends back reply.
– Process accesses resource

• On receipt of all replies
• Own request at head of queue

– Once done, process sends release to all processes.
– On receipt of release, process removes request

NETYS 2013 Morocco 28

Distributed Solution
• Does this work (Lamport original solution)?

• Need to order queues so they are identical:

– Use logical Lamport time + proc id to break ties.

– FIFO channels

• Requests are executed in causal order.

NETYS 2013 Morocco 29

Quorums

• What if there are failures?

• Do we need to communicate with ALL processes?

• Any two requests should have a common process
to act as an arbitrator.

• Let process pi (pj)request permission from Vi (Vj), then

 Vi ⋂ Vj ≠ ϕ.

• Vi is called a quorum.

• Basic protocol still works (basically think locking),
but: Deadlock

NETYS 2013 Morocco 30

Quorums

• Given n processes: 2|Vi| >n, ie,

• In general, majority, ie ⌈(n/2)⌉. [Gifford 79]

NETYS 2013 Morocco 31

General Quorums
• In a database context, we have read and write

operations. Hence, read quorums, Qr, and
write quorums, Qw.

• Simple generalization:

– Qr⋂ Qw ≠ϕ, Qw ⋂ Qw ≠ϕ

– Qr + Qw> n and 2 Qw > n

NETYS 2013 Morocco 32

CONSENSUS AND BYZANTINE
AGREEMENT

NETYS 2013 Morocco 33

Consensus or Byzantine Agreement

• The Story (Lamport, Shostak, and Pease in 1982)

• Malicious Failures (byzantine failures)

• General sends an binary value to n-1 participants
such that:

1.Agreement: All correct participants agree on
same value

2.Validity: If general is correct, every
participant agrees on the value general
sends

NETYS 2013 Morocco 34

General Impossibility Result

• In a synchronous distributed system:

No solution with fewer than 3f+1
processes can cope with f failures

NETYS 2013 Morocco 35

Paxos

• Lamport the archeologist and the “Part-time
Parliament” of Paxos:

– The Part-time Parliament, TOCS 1998

– Paxos Made Simple, ACM SIGACT News 2001.

– Paxos Made Live, PODC 2007

– Paxos Made Moderately Complex, (Cornell) 2011.

–……..

NETYS 2013 Morocco 36

The Paxos Atomic Broadcast Algorithm
Thanks to Idit Keidar for slides

• Leader based: each process has an estimate of
who is the current leader

• To order an operation, a process sends it to
current leader

• The leader sequences the operations and
launches a Consensus algorithm to ensure
agreement

NETYS 2013 Morocco 37

The Consensus Algorithm Structure

• Two phases

• Leader contacts a majority in each phase

• There may be multiple concurrent leaders

• Ballots distinguish among values proposed by
different leaders
– Unique, locally monotonically increasing

– Processes respond only to leader with highest ballot seen
so far

NETYS 2013 Morocco 38

The Two Phases of Paxos

• Phase 1: prepare

– If you believe you are the leader

• Choose new unique ballot number

• Learn outcome of all smaller ballots from majority

• Phase 2: accept

– Leader proposes a value with its ballot number

– Leader gets majority to accept its proposal

– A value accepted by a majority can be decided

NETYS 2013 Morocco 39

In Failure-Free Execution

1 1

2

n

.

.

.

(“accept”, 1,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 1,1)

(“ack”, 1,1, 0,0,^)

decide v1

(“accept”, 1,1 ,v1)

NETYS 2013 Morocco 40

Why is this phase needed?

Performance?

1 1

2

n

.

.

.

(“accept”, 1,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”, 1,1)

(“ack”, 1,1, 0,0,^)

(“accept”, 1,1 ,v1)

NETYS 2013 Morocco 41

Failure free execution

S1 S1 S1

S2

Sn

.

.

.

C

S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.
(“accept”) (“prepare”) (“ack”)

C

Phase 1 Phase 2

request response
S1

NETYS 2013 Morocco 42

Optimization

• Run Phase 1 only when the leader changes

– Phase 1 is called “view change” or “recovery
mode”

– Phase 2 is the “normal mode”

• Each message includes BallotNum (from the
last Phase 1) and ReqNum

• Respond only to messages with the “right”
BallotNum

NETYS 2013 Morocco 43

FLP Impossibility Theorem

• In an asynchronous system, consensus is
impossible to solve if one process may crash
and processes communicate by message
passing.

• Proved by Fisher, Lynch and Paterson in PODS
1983 and who won the Dijkstra Prize for this
result.

NETYS 2013 Morocco 44

NETYS 2013 Morocco 45

CAP Theorem (Eric Brewer)

• “Towards Robust

Distributed Systems”

PODC 2000.

• “CAP Twelve Years

Later: How the

"Rules" Have

Changed” IEEE

Computer 2012

CAP – Why P (A or C)?

‘X’:4

‘X’:4

‘X’:4

X = 5

‘X’:5

‘X’:5

X = ?

If we choose A, then Eventual Consistency…

NETYS 2013 Morocco 46

Why sacrifice Consistency?

• It is a simple solution
– nobody understands what sacrificing P really means

– sacrificing A is unacceptable in the Web

– possible to push the problem to app developer

• C not needed in many applications
– Banks do not implement ACID (classic example wrong)

– Airline reservation only transacts reads (Huh?)

– MySQL et al. ship by default in lower isolation level

• Data is noisy and inconsistent anyway
– making it, say, 1% worse does not matter 

[Vogels, VLDB 2007] NETYS 2013 Morocco 47

PEER TO PEER AND
DISTRIBUTED HASH TABLES

NETYS 2013 Morocco 48

Distributed Hash Tables

 Challenge: To design and implement a robust
and scalable distributed system composed of
inexpensive, individually unreliable computers
in unrelated administrative domains

NETYS 2013 Morocco 49
Partial thanks Idit Keidar)

Searching for distributed data

• Goal: Make billions of objects available to
millions of concurrent users
– e.g., music files

• Need a distributed data structure to keep
track of objects on different sires.
– map object to locations

• Basic Operations:
– Insert(key)

– Lookup(key)

NETYS 2013 Morocco 50

Searching

Internet

N1

N2 N3

N6 N5

N4

Publisher

Key=“title”
Value=MP3 data…

Client

Lookup(“title”)

?

NETYS 2013 Morocco 51

Simple Solution

• First There was Napster

– Centralized server/database for lookup

– Only file-sharing is peer-to-peer, lookup is not

• Launched in 1999, peaked at 1.5 million
simultaneous users, and shut down in July
2001.

NETYS 2013 Morocco 52

Overlay Networks

• A virtual structure imposed over the
physical network (e.g., the Internet)

– A graph, with hosts as nodes, and some edges

Overlay
Network

Node ids
Hash fn Hash fn

Keys

NETYS 2013 Morocco 53

Unstructured Approach: Gnutella

• Build a decentralized unstructured overlay

– Each node has several neighbors

– Holds several keys in its local database

• When asked to find a key X

– Check local database if X is known

– If yes, return, if not, ask your neighbors

• Use a limiting threshold for propagation.

NETYS 2013 Morocco 54

Structured vs. Unstructured

• The examples we described are unstructured
– There is no systematic rule for how edges are

chosen,
each node “knows some” other nodes

– Any node can store any data so a searched data
might reside at any node

• Structured overlay:
– The edges are chosen according to some rule
– Data is stored at a pre-defined place
– Tables define next-hop for lookup

NETYS 2013 Morocco 55

Distributed Hash Tables (DHTs)

• Nodes store table entries

• lookup(key) returns the location of the node
currently responsible for this key

• We will discuss Chord, Stoica, Morris, Karger,
Kaashoek, and Balakrishnan SIGCOMM 2001

• Other examples: CAN (Berkeley), Tapestry
(Berkeley), Pastry (Microsoft Cambridge), etc.

NETYS 2013 Morocco 56

Chord Logical Structure (MIT)

• m-bit ID space (2m IDs), usually m=160.
• Nodes organized in a logical ring according

to their IDs.

N1

N8

N10

N14

N21

N30
N38

N42

N48

N51
N56

57

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

NETYS 2013 Morocco 58
Thanks CMU for animation

DHT: Chord “Finger Table”

N80

1/2 1/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or

equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

NETYS 2013 Morocco 59

DHT: Chord Routing
• Upon receiving a query for

item id, a node:
• Checks whether it stores the

item locally?
• If not, forwards the query to

the largest node in its
successor table that does
not exceed id

0

1

2

3
4

5

6

7 i id+2
i
succ

0 2 2

1 3 6

2 5 6

Succ. Table

i id+2
i
succ

0 3 6

1 4 6

2 6 6

Succ. Table

i id+2
i
succ

0 1 1

1 2 2

2 4 0

Succ. Table

7

Items

1

Items

i id+2
i
succ

0 7 0

1 0 0

2 2 2

Succ. Table

query(7)

NETYS 2013 Morocco 60

Routing Time

n

f

p

finger[i]

• Node n looks up a key stored at
node p

• p is in n’s ith interval:
p  ((n+2i-1)mod 2m, (n+2i)mod 2m]

• n contacts f=finger[i]
– The interval is not empty so:

 f  ((n+2i-1)mod 2m, (n+2i)mod 2m]

• f is at least 2i-1 away from n

• p is at most 2i-1 away from f

• The distance is halved at each
hop.

n+2i-1

n+2i

61

The Transaction Concept

• Transactions were originally developed in the
context of DBMS as a paradigm to deal with:
– Concurrent access to shared data

– Failures of different kinds/types.

• The key problem solved in an elegant manner:
– Subtle and difficult issue of keeping data consistent in

the presence of concurrency and failures

 while ensuring performance, reliability, and
availability.

NETYS 2013 Morocco 62

Preliminaries: A database
• A database consists of a set of objects.

• A transaction is a set of operations (typically read
and write) executed in some partial order.

• Transaction execution must be atomic:

– no interference among transactions.

– Either all its operations are executed or none.

• Concurrency control protocol ensures that concurrent
transactions do not interfere with each other.

• Recovery protocol ensures the all or nothing property.

63 NETYS 2013 Morocco

Concurrency Control

• A history is serializable if it is equivalent to a
serial history over the same set of
transactions.

• Different notions of serializability:

• View Serializability: NP Complete 

• Conflict Serializability: H is CSR iff SG(H) is acyclic

• Two Phase locking.

• deadlock

64 NETYS 2013 Morocco

Atomic Commitment

• Distributed handshake protocol known as two-
phase commit (2PC):
– A coordinator (the Transaction Manager) takes the

responsibility of unanimous decision: COMMIT or
ABORT

– All database servers are the cohorts in this protocol
and become dependent on the coordinator

NETYS 2013 Morocco 65

Idea: Getting Married over the NW

NETYS 2013 Morocco

Will you ... ? Will you .. ?

Yes! Yes!

Married!

66

Commit Protocols

• What does a process do if it does not receive a message
it is expecting? It BLOCKS.

• 2 PC blocks with failures
• 3PC is non-blocking with site failures only.
• 3PC blocks with partitioning failures.

 Partition 1 Partition 2
• Theorem [Skeen83]: There is no non-blocking atomic

commit protocol in the presence of partitioning failures.

67 NETYS 2013 Morocco

68

Cloud Reality: The Data Centers

NETYS 2013 Morocco

App
Server

App
Server

App
Server

NETYS 2013 Morocco 69

Scaling in the Cloud

Load Balancer (Proxy)

App
Server

MySQL
Master DB

Client Site

App
Server

Client Site Client Site

Database becomes the
Scalability Bottleneck

Cannot leverage elasticity

App
Server

App
Server

App
Server

NETYS 2013 Morocco 70

Scaling in the Cloud

Load Balancer (Proxy)

App
Server

MySQL
Master DB

Client Site

App
Server

Client Site Client Site

Key Value Stores

App
Server

App
Server

App
Server

NETYS 2013 Morocco 71

Scaling in the Cloud

Load Balancer (Proxy)

App
Server

Client Site

App
Server

Client Site Client Site

Scalable and Elastic,
but limited consistency and

operational flexibility

NETYS 2013 Morocco 72

• Key-Valued data model
– Key is the unique identifier
– Key is the granularity for consistent access
– Value can be structured or unstructured

• Gained widespread popularity
– In house: Bigtable (Google), PNUTS (Yahoo!), Dynamo

(Amazon)
– Open source: HBase, Hypertable, Cassandra,

Voldemort

• Popular choice for the modern breed of web-
applications

NETYS 2013 Morocco 73

Key Value Stores

• Data model.
– Sparse, persistent, multi-dimensional sorted map

indexed by a row key, column key, and a timestamp.
– (row: byte[], column: byte[], time: int64)  byte[]

• Scalability and Elasticity: Data is partitioned
across multiple servers.

NETYS 2013 Morocco 74

Big Table (Google)

• Every read or write of data under a single row
is atomic.

• Objective: make read operations single-sited!

NETYS 2013 Morocco 75

Atomicity Guarantees in Key-Value
Stores

• Tablet servers
– Handles read and writes to its tablet and splits tablets
– Each tablet is typically 100-200 MB in size

• Master Server
– Assigns tablets to tablet servers
– Detects the addition and deletion of tablet servers
– Balances tablet-server load

• Google File System (GFS)
– Highly available distributed file system that stores log and data

files

• Chubby
– Manage meta-data
– Highly available persistent distributed lock manager

NETYS 2013 Morocco 76

Big Table’s Building Blocks

NETYS 2013 Morocco 77

Overview of Bigtable Architecture

Tablet
Server

Tablet
Server

Google File System

Tablet
Server

Master Chubby

Control
Operations

Lease
Management

T1 T2 Tn Tablets

Master and Chubby Proxies

Log Manager Cache Manager

Dynamo (Amazon) and
Cassandra (Facebook)

• Consistent hashing: the

output range of a hash function

is treated as a fixed circular

space or “ring” a la Chord.

• “Virtual Nodes”: Each node

can be responsible for more

than one virtual node (to deal

with non-uniform data and load

distribution)

NETYS 2013 Morocco 78

Sloppy Quorum

• R and W is the minimum number of nodes that must
participate in a successful read/write operation.

• Setting R + W > N yields a quorum-like system.

• Operation latency dictated by the slowest of t
replicas. For this reason, R and W are usually
configured to be less than N, to provide better
latency and availability.

• Use vector clocks in order to capture causality
between different versions of same object

• Application reconciles divergent versions and
collapses into a single new version.

NETYS 2013 Morocco 79

Vector clock example

NETYS 2013 Morocco 80

• Scale-up

– Classical enterprise setting
(RDBMS)

– Flexible ACID transactions

– Transactions in a single node

• Scale-out

– Cloud friendly (Key value stores)

– Execution at a single server

• Limited functionality & guarantees

– No multi-row or multi-step
transactions

Practical approaches to scalability
Circa Year 2000.

NETYS 2013 Morocco 81

Distribution & Consistency

• Application developers need higher-level
abstractions:

– MapReduce paradigm for Big Data analysis

– Transaction Management in DBMSs

 NETYS 2013 Morocco 82

NoSQL is apparently NOT going to
deliver World Peace

NETYS 2013 Morocco 83

Supporting SQL in the Cloud

RDBMS Key Value Stores

Fusion
 Fission

G-Store [SoCC ‘10]
MegaStore [CIDR ‘11]
ecStore [VLDB ‘10]
Walter [SOSP ‘11]

ElasTraS [HotCloud ’09, TODS]

Cloud SQL Server [ICDE ’11]
RelationalCloud [CIDR ‘11]

NETYS 2013 Morocco 84

First Gen Data Center Systems
These systems question the wisdom of

abandoning the proven data management
principles

Gradual realization of the value of the concept
of a “transaction” and other synchronization
mechanisms

Avoid distributed transactions by co-locating data items
that are accessed together

NETYS 2013 Morocco 85

• Pre-defined
partitioning scheme

– e.g.: Tree schema

– ElasTras, SQLAzure

– (TPC-C)

• Workload driven
partitioning scheme

– e.g.: Schism in
RelationalCloud

Transactions using Data Partitioning
 (Statically)

NETYS 2013 Morocco 86

• Semantically pre-defined as Entity Groups

– Blogs, email, maps

– Cheap transactions in Entity groups (common)

Transactions using Data Partitioning
(Statically)

Megastore (Google)-CIDR 2011

NETYS 2013 Morocco 87

Semantically Predefined
• Email

– Each email account forms a natural entity group
– Operations within an account are transactional: user’s send

message is guaranteed to observe the change despite of fail-
over to another replica

• Blogs
– User’s profile is entity group
– Operations such as creating a new blog rely on asynchronous

messaging with two-phase commit

• Maps
– Dividing the globe into non-overlapping patches
– Each patch can be an entity group

NETYS 2013 Morocco 88

Megastore Entity Groups

• Transactional access to a group of data
items formed on-demand

– Dynamically formed database partitions

• Challenge: Avoid distributed transactions!

• Key Group Abstraction

– Groups are small

– Groups have non-trivial lifetime

– Groups are dynamic and on-demand

NETYS 2013 Morocco 89

G-Store
UCSB Das et al. ACM SoCC’2010

NETYS 2013 Morocco 90

Transactions on Groups
Without distributed transactions

Ownership
of keys at a
single node

Key
Group

 One key selected as the
leader

 Followers transfer
ownership of keys to leader

Grouping Protocol

• How does the leader execute transactions?
– Caches data for group members  underlying data

store equivalent to a disk

– Transaction logging for durability

– Cache asynchronously flushed to propagate updates

– Guaranteed update propagation

NETYS 2013 Morocco 91

Efficient Transaction Processing

Log
Transaction Manager

Cache Manager
Leader

Followers

Asynchronous update
Propagation

NETYS 2013 Morocco 92

Prototype: G-Store
An implementation over Key-value stores

Grouping
Layer

Key-Value Store Logic

Distributed Storage

Application Clients

Transactional Multi-Key Access

G-Store

Transaction
Manager

Grouping
Layer

Key-Value Store Logic

Transaction
Manager

Grouping
Layer

Key-Value Store Logic

Transaction
Manager

Grouping middleware layer resident on top of a key-value store

Challenge: Elasticity in Database tier

Database tier

Load Balancer

Application/
Web/Caching
tier

NETYS 2013 Morocco 93

Two common DBMS architectures

• Decoupled storage architectures

– ElasTraS, G-Store, Deuteronomy,
MegaStore

– Persistent data is not migrated

– Albatross [VLDB 2011]

• Shared nothing architectures

– SQL Azure, Relational Cloud,
MySQL Cluster

– Migrate persistent data

– Zephyr [SIGMOD 2011]
NETYS 2013 Morocco 94

• Need to tolerate catastrophic failures

– Geographic Replication

• How to support ACID transactions over data replicated at
multiple datacenters
– One-copy serializablity: Gives Consistency and Replication. Clients can

access data in any datacenter, appears as single copy with atomic
access

• Major challenges:
– Latency bottleneck (cross data center communication)

– Distributed synchronization

– Atomic commitment

Fault-tolerance in the Cloud

NETYS 2013 Morocco 95

Round Trip Times (RTT)

21

101 99

169

341

173

260

Brisbane 2013

Fault-tolerance in the Cloud

• Megastore Google (CIDR 2011)

• Paxos-CP UCSB (VLDB 2012)

• Message Futures UCSB (CIDR 2013)

• MDCC Berkeley (EuroSys 2013)

• Spanner Google (OSDI 2012)

• Replicated Commits UCSB (On-going)

NETYS 2013 Morocco 97

• Better understand the various paradigms and
alternatives.

• Develop a general framework to explain the
pros and cons of these approaches.

• Automatically configure systems for better
performance.

NETYS 2013 Morocco

Next Steps

98

 Distributed Systems References
• Leslie Lamport: Time, Clocks, and the Ordering of Events in a

Distributed System. Commun. ACM 21(7): 558-565 (1978)

• Mani Chandy, Leslie Lamport: Distributed Snapshots:
Determining Global States of Distributed Systems ACM Trans.
Comput. Syst. 3(1): 63-75 (1985)

• Gene T. J. Wuu, Arthur J. Bernstein: Efficient Solutions to the
Replicated Log and Dictionart Problems. PODC 1984: 233-242

• Hari Balakrishnan, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Looking up data in P2P systems. In
Communications of the ACM, February 2003

• Reliable Distributed Computing with the Isis Toolkit. K. Birman
and R. van Renesse, eds. IEEE Computer Society Press, 1994.

NETYS 2013 Morocco 99

• Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The
Byzantine Generals Problem. ACM Trans. Program. Lang. Syst.
4(3): 382-401 (1982)

• Leslie Lamport: The Part-Time Parliament. ACM Trans.
Comput. Syst. 16(2): 133-169 (1998)

• Michael J. Fischer, Nancy A. Lynch, Mike Paterson:
Impossibility of Distributed Consensus with One Faulty
Process. PODS 1983: 1-7

• Eric A. Brewer. Towards robust distributed systems. (Invited
Talk)Principles of Distributed Computing, July 2000.

NETYS 2013 Morocco 100

 Distributed Systems References

Database References

• Concurrency Control and Recovery in Database Systems Philip A.
Bernstein, Vassos Hadzilacos, Nathan Goodman . 1987
(http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx)

• Gerhard Weikum, Gottfried Vossen: Transactional Information Systems:
Theory, Algorithms, and the Practice of Concurrency Control and Recovery
Morgan Kaufmann 2002

• Transaction Processing: Concepts and Techniques, Jim Gray and Andreas
Reuter. Morgan Kaufmann Publishers 1992

NETYS 2013 Morocco 101

Key-Value Store References
• Chang, Dean, Ghemawat, Hsieh, Wallach, Burrows, Chandra, Fikes,

Gruber: Bigtable: A Distributed Storage System for Structured
Data. OSDI 2006

• The Google File System: Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung. Symp on Operating Systems Princ 2003.

• GFS: Evolution on Fast-Forward: Kirk McKusick, Sean Quinlan
Communications of the ACM 2010.

• Cooper, Ramakrishnan, Srivastava, Silberstein, Bohannon,
Jacobsen, Puz, Weaver, Yerneni: PNUTS: Yahoo!'s hosted data
serving platform. VLDB 2008.

• DeCandia,Hastorun,Jampani, Kakulapati, Lakshman, Pilchin,
Sivasubramanian, Vosshall, Vogels: Dynamo: amazon's highly
available key-value store. SOSP 2007

• Cooper, Silberstein, Tam, Ramakrishnan, Sears: Benchmarking cloud
serving systems with YCSB. SoCC 2010

NETYS 2013 Morocco 102

First Gen Cloud db References
• Das, Agrawal, El Abbadi, "G-Store: A Scalable Data Store for Transactional

Multi key Access in the Cloud” Symposium on Cloud Computing (SOCC) 2010

• Agrawal, El Abbadi, Antony, Das, "Data Management Challenges in Cloud
Computing Infrastructures“, International Workshop on Databases in
Networked Information Systems (DNIS 2010), March 2010

• Das, Agrawal, El Abbadi, "ElasTraS: An Elastic Transactional Data Store in the
Cloud“, HotCloud '09

• Curino, Jones,Popa,Malviya,Wu,Madden,Balakrishnan, Zeldovich: Relational
Cloud: a Database Service for the cloud. CIDR 2011

• Bernstein, Cseri,Dani, Ellis, Kalhan, Kakivaya,Lomet,Manne,Novik,Talius:
Adapting microsoft SQL server for cloud computing. ICDE 2011.

• Levandoski, Lomet, Mokbel,Zhao: Deuteronomy: Transaction Support for
Cloud Data. CIDR 2011.

• Brantner, lorescu, Graf, Kossmann, Kraska: Building a database on S3. SIGMOD
2008.

• Kraska, Hentschel, Alonso, Kossmann: Consistency Rationing in the Cloud: Pay
only when it matters. PVLDB 2009

• Kossmann, Kraska, Loesing: An evaluation of alternative architectures for
transaction processing in the cloud. SIGMOD 2010

VLDB Summer School 2011 103

2nd Gen Cloud DB References

• Baker, Bond,Corbett, Furman, Khorlin, Larson, Leon, Li, Lloyd, Yushprakh:
Megastore: Providing Scalable, Highly Available Storage for Interactive
Services. CIDR 2011.

• Patterson, Elmore, Nawab, Agrawal, El Abbadi: Serializability, not Serial:
Concurrency Control and Availability in Multi-Datacenter
Datastores. VLDB 2012

• Nawab, Agrawal, El Abbadi, "Message Futures: Fast Commitment of
Transactions in Multi-datacenter Environments", CIDR, 2013

• Kraska, Pang, Franklin, Madden, Fekete: MDCC: Multi-Data Center
Consistency. EuroSys 2013

• Corbett et al.: Spanner: Google's Globally-Distributed Database. OSDI
2012.

NETYS 2013 Morocco 104

