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Evolution of computing history 

• Main Frame with terminals 

• Network of PCs & Workstations. 

• Client-Server 

• Now, moving forward to 

Large cloud. 
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Cloud Computing: Why Now? 

• Experience with very large datacenters 
– Unprecedented economies of scale 

– Transfer of risk 

 

• Technology factors 
– Pervasive broadband Internet 

– Maturity in Virtualization Technology 

 

• Business factors 
– Economies of Scale 

– Pay-as-you-go billing model 
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Unused resources 

Cloud’s Promise: Elasticity 

• Pay per use instead of provisioning for peak 

Traditional Infrastructures Deployment in the Cloud 
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Cloud Reality: Elasticity 



• Wikipedia has over 3.5 million pages. 
• Yahoo! 650M+ unique user, 11B page visits/month 
•  Flickr members uploaded over 5 billion photos 
 
• Facebook:1Billion users,1.13 Trillion "likes", 219Billion 

photos and 140.3 Billion friendships. 
 
• You Tube: 35 hours of videos uploaded each min. 
• “more video uploaded to YouTube in the past two 

months than there would have been if ABC, CBS, and 
NBC had been airing 24/7 since 1948!”  
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Explosive Data growth 



Cloud Properties 

• Commodity hardware 

• Large Scale 

• Elasticity  
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Why does this work? 

• As long as requests are stateless, we can add 
more resources, thus providing: 

 

•Scale 

•Elasticity 
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But, most services need DATA! 

• Challenges: 

–How to scale with the increasing 
amounts of data 

–Where to store the data 

–Accessing data on multiple sites 

–Failures 
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Need 

• Fault-tolerance: 

– Replication 

• Large scale data: 

– Partition data across multiple servers 

• Managing the system state. 

• Must understand: 

– Database foundations 

– Distributed systems foundations. 

11 NETYS 2013 Morocco 



Main Characteristics of Distributed 
Systems 

• Independent processors, 
sites, processes 

• Message passing 

• No shared memory 

• No shared clock 

• Independent failure 
modes 
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Distributed System Models 

• Synchronous System:  Known bounds on times 
for message transmission, processing , bounds 
on local clock drifts, etc. 

– Can use timeouts 

• Asynchronous System: No known bounds on 
times for message transmission, processing, 
bounds on local clock drifts, etc. 

– More realistic, practical, but no timeout. 
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CAUSALITY AND TIME 
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What is a Distributed System? 

• A simple model of a distributed system 
proposed by Lamport in a landmark 1978 
paper:  

• “Time, Clocks and the Ordering of Events in a 
Distributed System” Communications of the 
ACM 

 

NETYS 2013 Morocco 15 



What is a Distributed System? 

• A set of processes that communicate using 
message passing. 

• A process is a sequence of events 

• 3 kinds of events: 

– Local events 

– Send events 

– Receive events 

• Local events on a process for a total order. 
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Example of a Distributed System 
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Happens Before or Causal Order  
on Events 

• Event e happens before (causally precedes) 
event f, denoted e → f if: 

1. The same process executes e before f ; or 

2. e is send(m) and f is receive(m); or 

3. Exists h so that e → h and h → f  

• We define concurrent, e || f, as:  
  ¬(e → f   f → e) 
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Lamport Logical Clocks 

• Assign “clock” value to each event 

– if  ab  then  clock(a) < clock(b) 

• Assign each process a clock “counter”. 

– Clock must be incremented between any two 
events in the same process 

– Each message carries the sender’s clock value 

• When a message arrives set local clock to: 

–  max(local value, message timestamp + 1) 
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Example of a Logical Clock 
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Vector clocks 
1. Vector initialized to 0 at each process 

 Vi [j] = 0 for i, j =1, …, N 

2. Process increments its element of the vector 
in local vector before event: 

  Vi [i] = Vi [i] +1  

3. Piggyback Vi with every message sent from 
process Pi 

4. When Pj receives message, compares vectors 
element by element and sets local vector to 
higher of two values 

  Vj [i] = max(Vi [i], Vj [i]) for i=1, …, N  
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Comparing vector timestamps 

Define 

 V = V’ iff  V [i ] = V’[i ]  for i = 1 … N 
 V  V’ iff  V [i ]  V’[i ]  for i = 1 … N  

For any two events e, e’ 

 e  e’  if and only if V(e) < V(e’) 

 

Two events are concurrent if neither 

 V(e)  V(e’)  nor V(e’)  V(e)  
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Vector Clock Example 
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MUTUAL EXCLUSION AND 
QUORUMS 
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Distributed Mutual Exclusion 

• Given a set of processes and a single resource, 
develop a protocol to ensure exclusive access 
to the resource by a single process at a time. 

 

• This is a fundamental operation in operating 
systems, and is generalized to locking in 
databases. 
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Centralized Solution 

• Choose a special coordinator site, coord. 

• Coord maintains a queue of pending requests. 

• Protocol: 
– Process send request to coord. 

– If no other request, coord sends back reply. 
• Otherwise, put request in queue 

– On receipt of reply, process accesses resource. 

– Once done, process sends release to coord. 

– On receipt of release, coord checks queue for any 
pending requests.  
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Centralized Solution 
 

P0 

C 
request(R) 

reply(R) 

release(R) P1 

P2 

request(R) 

Queue 

P1 

request(R) 

P2 

reply(R) 
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Distributed Solution (Lamport ‘78) 

• Instead of a central coordinator, all processes 
collectively 

• Use similar approach: 
– Process sends request to all processes and put request 

in local queue. 
– On receipt of request, process sends back reply. 
– Process accesses resource 

• On receipt of all replies 
• Own request at head of queue 

– Once done, process sends release to all processes. 
– On receipt of release, process removes request  
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Distributed Solution 
• Does this work (Lamport original solution)? 

• Need to order queues so they are identical: 

– Use logical Lamport time + proc id to break ties. 

– FIFO channels 

• Requests are executed in causal order. 
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Quorums 

• What if there are failures? 

• Do we need to communicate with ALL processes? 

• Any two requests should have a common process 
to act as an arbitrator. 

• Let process pi (pj)request permission from Vi (Vj), then 

                Vi ⋂ Vj ≠ ϕ. 

• Vi is called a quorum. 

• Basic protocol still works (basically think locking), 
but: Deadlock 
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Quorums 

• Given n processes: 2|Vi| >n, ie, 

 

 

 

 

• In general, majority, ie  ⌈(n/2)⌉.  [Gifford 79] 
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General Quorums 
• In a database context,  we have read and write 

operations.  Hence, read quorums, Qr, and 
write quorums, Qw. 

• Simple generalization:  

– Qr⋂ Qw ≠ϕ, Qw ⋂ Qw ≠ϕ 

– Qr + Qw> n  and 2 Qw > n 
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CONSENSUS AND BYZANTINE 
AGREEMENT 
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Consensus or Byzantine Agreement 

• The Story (Lamport, Shostak, and Pease in 1982) 

• Malicious Failures (byzantine failures) 

• General sends an binary value to n-1 participants 
such that: 

1.Agreement: All correct participants agree on 
same value 

2.Validity:  If general is correct, every 
participant agrees on the value general 
sends 
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General Impossibility Result 

• In a synchronous distributed system: 

 

No solution with fewer than 3f+1 
processes can cope with f failures 
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Paxos 

• Lamport the archeologist and the “Part-time 
Parliament” of Paxos:  

– The Part-time Parliament,  TOCS 1998 

– Paxos Made Simple, ACM SIGACT News 2001. 

– Paxos Made Live, PODC 2007 

– Paxos Made Moderately Complex, (Cornell) 2011. 

–…….. 
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The Paxos Atomic Broadcast Algorithm 
Thanks to Idit Keidar for slides 

• Leader based: each process has an estimate of 
who is the current leader 

• To order an operation, a process sends it to 
current leader 

• The leader sequences the operations and 
launches a Consensus algorithm to ensure 
agreement 
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The Consensus Algorithm Structure 

• Two phases 

• Leader contacts a majority in each phase 

• There may be multiple concurrent leaders  

• Ballots distinguish among values proposed by 
different leaders 
– Unique,  locally monotonically increasing  

– Processes respond only to leader with highest ballot seen 
so far 

NETYS 2013 Morocco 38 



The Two Phases of Paxos 

• Phase 1: prepare 

– If you believe you are the leader 

• Choose new unique ballot number 

• Learn outcome of all smaller ballots from majority 

• Phase 2: accept 

– Leader proposes a value with its ballot number 

– Leader gets majority to accept its proposal 

– A value accepted by a majority can be decided 
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In Failure-Free Execution 
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Why is this phase needed? 

Performance? 
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Failure free execution 
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Optimization 

• Run Phase 1 only when the leader changes 

– Phase 1 is called “view change” or “recovery 
mode” 

– Phase 2 is the “normal mode” 

• Each message includes BallotNum (from the 
last Phase 1) and ReqNum 

• Respond only to messages with the “right” 
BallotNum 
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FLP Impossibility Theorem 

• In an asynchronous system, consensus is 
impossible to solve if one process may crash 
and processes communicate by message 
passing.   

• Proved by Fisher,  Lynch and Paterson in PODS 
1983 and who won the Dijkstra Prize for this 
result. 
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CAP Theorem (Eric Brewer) 

• “Towards Robust 

Distributed Systems” 

PODC 2000. 

 

• “CAP Twelve Years 

Later: How the 

"Rules" Have 

Changed” IEEE 

Computer 2012 



CAP – Why P ( A or C )? 

‘X’:4 

‘X’:4 

‘X’:4 

X = 5 

‘X’:5 

‘X’:5 

X = ? 

If we choose A, then Eventual Consistency… 
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Why sacrifice Consistency?  

• It is a simple solution 
– nobody understands what sacrificing P really means 

– sacrificing A is unacceptable in the Web 

– possible to push the problem to app developer 

• C not needed in many applications 
– Banks do not implement ACID (classic example wrong) 

– Airline reservation only transacts reads (Huh?) 

– MySQL et al. ship by default in lower isolation level 

• Data is noisy and inconsistent anyway 
– making it, say, 1% worse does not matter  

[Vogels, VLDB 2007] NETYS 2013 Morocco 47 



PEER TO PEER AND 
DISTRIBUTED HASH TABLES 
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Distributed Hash Tables 

   Challenge:  To design and implement a robust 
and scalable distributed system composed of 
inexpensive, individually unreliable computers 
in unrelated administrative domains 
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Searching for distributed data 

• Goal: Make billions of objects available to 
millions of concurrent users 
– e.g., music files 

• Need a distributed data structure to keep 
track of objects on different sires. 
– map object to locations 

• Basic Operations: 
– Insert(key) 

– Lookup(key) 
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Searching 

Internet 

N1 

N2 N3 

N6 N5 

N4 

Publisher 

Key=“title” 
Value=MP3 data… 

Client 

Lookup(“title”) 

? 
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Simple Solution 

• First There was Napster 

– Centralized server/database for lookup 

– Only file-sharing is peer-to-peer, lookup is not 

• Launched in 1999, peaked at 1.5 million 
simultaneous users, and shut down in July 
2001. 
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Overlay Networks 

• A virtual structure imposed over the 
physical network (e.g., the Internet) 

– A graph, with hosts as nodes, and some edges 

Overlay 
Network 

Node ids 
Hash fn Hash fn 

Keys 
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Unstructured Approach: Gnutella 

 

• Build a decentralized unstructured overlay 

– Each node has several neighbors 

– Holds several keys in its local database 

• When asked to find a key X 

– Check local database if X is known 

– If yes, return, if not, ask your neighbors 

• Use a limiting threshold for propagation. 
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Structured vs. Unstructured 

• The examples we described are unstructured  
– There is no systematic rule for how edges are 

chosen, 
each node “knows some” other nodes 

– Any node can store any data so a searched data 
might reside at any node 

• Structured overlay: 
– The edges are chosen according to some rule 
– Data is stored at a pre-defined place 
– Tables define next-hop for lookup 
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Distributed Hash Tables (DHTs) 

• Nodes store table entries 

• lookup( key )  returns the location of the node 
currently responsible for this key 

 

• We will discuss Chord, Stoica, Morris, Karger, 
Kaashoek, and Balakrishnan  SIGCOMM 2001 

• Other examples:  CAN (Berkeley), Tapestry 
(Berkeley), Pastry (Microsoft Cambridge), etc. 

 

 
NETYS 2013 Morocco 56 



Chord Logical Structure (MIT) 

• m-bit ID space (2m IDs), usually m=160. 
• Nodes organized in a logical ring according 

to their IDs. 
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N30 
N38 

N42 

N48 

N51 
N56 
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DHT: Consistent Hashing 

N32 

N90 

N105 

K80 

K20 

K5 

Circular ID space 

Key 5 
Node 105 

A key is stored at its successor: node with next higher ID 
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DHT: Chord “Finger Table” 

N80 

1/2 1/4 

1/8 

1/16 
1/32 
1/64 
1/128 

• Entry i in the finger table of node n is the first node that succeeds or 

equals n + 2i 

• In other words, the ith finger points 1/2n-i way around the ring 
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DHT: Chord Routing 
• Upon receiving a query for 

item id, a node: 
• Checks whether it stores the 

item locally? 
• If not, forwards the query to 

the largest node in its 
successor table that does 
not exceed id 
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Routing Time 

n 

f 

p 

finger[i] 

• Node n looks up a key stored at 
node p 

• p is in n’s ith interval:  
p  ((n+2i-1)mod 2m, (n+2i)mod 2m]  

• n contacts f=finger[i] 
– The interval is not empty so: 

 f  ((n+2i-1)mod 2m, (n+2i)mod 2m]  

• f is at least 2i-1 away from n 

• p is at most 2i-1 away from f 

• The distance is halved at each 
hop. 
 

n+2i-1 

n+2i 
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The Transaction Concept 

• Transactions were originally developed in the 
context of DBMS as a paradigm to deal with: 
– Concurrent access to shared data 

– Failures of different kinds/types. 

 

• The key problem solved in an elegant manner: 
– Subtle and difficult issue of keeping data consistent in 

the presence of concurrency and failures 

    while ensuring performance, reliability, and 
availability. 
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Preliminaries:  A database 
• A database consists of a set of objects. 

• A  transaction is a set of operations (typically read 
and write) executed in some partial order. 

• Transaction execution must be atomic: 

– no interference among transactions. 

– Either all its operations are executed or none. 

• Concurrency control protocol ensures that concurrent 
transactions do not interfere with each other. 

• Recovery protocol ensures the all or nothing property. 
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Concurrency Control 

• A history is serializable if it is equivalent to a 
serial history over the same set of 
transactions. 

• Different notions of serializability: 

• View Serializability:  NP Complete  

• Conflict Serializability:  H is CSR iff SG(H) is acyclic 

• Two Phase locking. 

• deadlock 
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Atomic Commitment 

• Distributed handshake protocol known as two-
phase commit (2PC): 
– A coordinator (the Transaction Manager) takes the 

responsibility of unanimous decision: COMMIT or 
ABORT 

– All database servers are the cohorts in this protocol 
and become dependent on the coordinator 
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Idea: Getting Married over the NW 

NETYS 2013 Morocco 

Will you ... ? Will you .. ? 

Yes! Yes! 

Married! 
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Commit Protocols 

• What does a process do if it does not receive a message 
it is expecting?  It BLOCKS. 

• 2 PC blocks with failures 
• 3PC is non-blocking with site failures only. 
• 3PC blocks with partitioning failures. 

 
 

 
 
 
 

          Partition 1                                                 Partition 2 
• Theorem [Skeen83]:  There is no non-blocking atomic 

commit protocol in the presence of partitioning failures. 
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68 

Cloud Reality: The Data Centers 
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Scaling in the Cloud 

Load Balancer (Proxy) 
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Client Site 

App 
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Database becomes the 
Scalability Bottleneck 

Cannot leverage elasticity 
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Scaling in the Cloud 

Load Balancer (Proxy) 
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Key Value Stores 
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Server 
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Scaling in the Cloud 

Load Balancer (Proxy) 

App 
Server 

Client Site 

App 
Server 

Client Site Client Site 

Scalable and Elastic, 
but limited consistency and 

operational flexibility 
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• Key-Valued data model 
– Key is the unique identifier 
– Key is the granularity for consistent access 
– Value can be structured or unstructured 

• Gained widespread popularity 
– In house: Bigtable (Google), PNUTS (Yahoo!), Dynamo 

(Amazon) 
– Open source: HBase, Hypertable, Cassandra, 

Voldemort 

• Popular choice for the modern breed of web-
applications 
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Key Value Stores 



 

 

• Data model. 
– Sparse, persistent, multi-dimensional sorted map 

indexed by a row key, column key, and a timestamp. 
– (row: byte[ ], column: byte[ ], time: int64)  byte[ ] 

 

• Scalability and Elasticity: Data is partitioned 
across multiple servers. 
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Big Table (Google) 



 

• Every read or write of data under a single row 
is atomic. 

 

• Objective:  make read operations single-sited! 
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Atomicity Guarantees in Key-Value 
Stores 



• Tablet servers 
– Handles read and writes to its tablet and splits tablets 
– Each tablet is typically 100-200 MB in size 

• Master Server 
– Assigns tablets to tablet servers 
– Detects the addition and deletion of tablet servers 
– Balances tablet-server load 

• Google File System (GFS) 
– Highly available distributed file system that stores log and data 

files 

• Chubby 
– Manage meta-data 
– Highly available persistent distributed lock manager 
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Big Table’s Building Blocks 
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Overview of Bigtable Architecture 

Tablet 
Server 

Tablet 
Server 

Google File System 

Tablet 
Server 

Master Chubby 

Control 
Operations 

Lease  
Management 

T1 T2 Tn Tablets 

Master and Chubby Proxies 

Log Manager Cache Manager 



Dynamo (Amazon) and 
Cassandra (Facebook) 

• Consistent hashing: the 

output range of a hash function 

is treated as a fixed circular 

space or “ring” a la Chord. 

• “Virtual Nodes”: Each node 

can be responsible for more 

than one virtual node (to deal 

with non-uniform data and load 

distribution) 
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Sloppy Quorum 

• R and W is the minimum number of nodes that must 
participate in a successful read/write operation. 

• Setting R + W > N yields a quorum-like system. 

• Operation latency dictated by the slowest of t 
replicas. For this reason, R and W are usually 
configured to be less than N, to provide better 
latency and availability. 

• Use vector clocks in order to capture causality 
between different versions of same object 

• Application reconciles divergent versions and 
collapses into a single new version. 
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Vector clock example 
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• Scale-up 

– Classical enterprise setting 
(RDBMS) 

– Flexible ACID transactions 

– Transactions in a single node 

• Scale-out 

– Cloud friendly (Key value stores) 

– Execution at a single server 

• Limited functionality & guarantees 

– No multi-row or multi-step 
transactions 

Practical approaches to scalability 
Circa Year 2000. 
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Distribution & Consistency 

 

 

• Application developers need higher-level 
abstractions: 

– MapReduce paradigm for Big Data analysis  

– Transaction Management in DBMSs 
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NoSQL is apparently NOT going to 
deliver World Peace 
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Supporting SQL in the Cloud 
 

RDBMS Key Value Stores 

Fusion 
 Fission 

G-Store [SoCC ‘10] 
MegaStore [CIDR ‘11] 
ecStore [VLDB ‘10] 
Walter [SOSP ‘11] 
 

ElasTraS [HotCloud ’09, TODS] 

Cloud SQL Server [ICDE ’11] 
RelationalCloud  [CIDR ‘11] 
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First Gen Data Center Systems 
These systems question the wisdom of 

abandoning the proven data management 
principles 

Gradual realization of the value of the concept 
of a “transaction” and other synchronization 
mechanisms 

Avoid distributed transactions by co-locating data items 
that are accessed together  
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• Pre-defined 
partitioning scheme 

– e.g.: Tree schema  

– ElasTras,  SQLAzure 

– (TPC-C) 

• Workload driven 
partitioning scheme 

– e.g.: Schism in 
RelationalCloud 

Transactions using Data Partitioning 
                     (Statically) 
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• Semantically pre-defined as Entity Groups 

– Blogs, email, maps 

– Cheap transactions in Entity groups (common) 

 

Transactions using Data Partitioning 
(Statically) 

Megastore (Google)-CIDR 2011 
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Semantically Predefined 
• Email 

– Each email account forms a natural entity group 
– Operations within an account are transactional: user’s send 

message is guaranteed to observe the change despite of fail-
over to another replica 

• Blogs 
– User’s profile is entity group 
– Operations such as creating a new blog rely on asynchronous 

messaging with two-phase commit 

• Maps 
– Dividing the globe into non-overlapping patches 
– Each patch can be an entity group 
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Megastore Entity Groups 



• Transactional access to a group of data 
items formed on-demand 

– Dynamically formed database partitions 

• Challenge: Avoid distributed transactions! 

• Key Group Abstraction 

– Groups are small 

– Groups have non-trivial lifetime 

– Groups are dynamic and on-demand 

 
NETYS 2013 Morocco 89 

G-Store 
UCSB Das et al. ACM SoCC’2010 
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Transactions on Groups 
Without distributed transactions 

Ownership 
of keys at a 
single node 

Key 
Group 

 One key selected as the 
leader 

 Followers transfer 
ownership of keys to leader 

Grouping Protocol 



• How does the leader execute transactions? 
– Caches data for group members  underlying data 

store equivalent to a disk 

– Transaction logging for durability 

– Cache asynchronously flushed to propagate updates 

– Guaranteed update propagation 
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Efficient Transaction Processing 

Log 
Transaction Manager 

Cache Manager 
Leader 

Followers 

Asynchronous update 
Propagation 
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Prototype: G-Store 
An implementation over Key-value stores 

Grouping 
Layer 

Key-Value Store Logic 

Distributed Storage 

Application Clients 

Transactional Multi-Key Access 

G-Store 

Transaction 
Manager 

Grouping 
Layer 

Key-Value Store Logic 

Transaction 
Manager 

Grouping 
Layer 

Key-Value Store Logic 

Transaction 
Manager 

Grouping middleware layer resident on top of a key-value store 



Challenge: Elasticity in Database tier 

Database tier 

Load Balancer 

Application/
Web/Caching 
tier 
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Two common DBMS architectures 

• Decoupled storage architectures 

– ElasTraS, G-Store, Deuteronomy, 
MegaStore 

– Persistent data is not migrated 

– Albatross [VLDB 2011] 

 

• Shared nothing architectures 

– SQL Azure, Relational Cloud, 
MySQL Cluster 

– Migrate persistent data 

– Zephyr [SIGMOD 2011] 
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• Need to tolerate catastrophic failures 

– Geographic Replication 

• How to support ACID transactions over data replicated at 
multiple datacenters  
– One-copy serializablity:  Gives Consistency and Replication. Clients can 

access data in any datacenter, appears as single copy with atomic 
access 

• Major challenges: 
– Latency bottleneck (cross data center communication) 

– Distributed synchronization 

– Atomic commitment  
 

 

 

 

Fault-tolerance in the Cloud 
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Round Trip Times (RTT) 

21 
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169 

341 

173 

260 
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Fault-tolerance in the Cloud 

• Megastore Google (CIDR 2011) 

• Paxos-CP UCSB (VLDB 2012) 

• Message Futures UCSB (CIDR 2013) 

• MDCC Berkeley (EuroSys 2013) 

• Spanner Google (OSDI 2012) 

• Replicated Commits UCSB (On-going) 
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• Better understand the various paradigms and 
alternatives. 

• Develop a general framework to explain the 
pros and cons of these approaches. 

• Automatically configure systems for better 
performance. 

NETYS 2013 Morocco 
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