
2

NETYS 2017, Marrakech, Morocco

Atomic Shared Objects
for Distributed Systems:

Consistency, Latency, Reconfiguration

Alexander A. Schwarzmann
University of Connecticut, USA

3

قراءة ,�كتابة , الحساب�
q  “Three R’s” -- Reading, w’Riting, and a’Rithmetic

§ Underlay much of human intellectual activity
§  Venerable foundation of computing technology

q  With networking, communication became a major activity
§  Email – electronic counterpart of postal service

q  Yet, it is natural to deal with reading, writing, and computing
§  A web browser app may load (i.e., read) a page,

perform computation, and save (i.e., write) the results
§  In distributed databases we retrieve and store data, and

rarely talk about sending and receiving data
q  Arguably, it is also easier to develop distributed algorithms

with readable/writeable objects, than to use message passing

4

Sharing Memory in a Networked System

q  Let’s place a shareable object at a node in a network
§ Not fault-tolerant – single point of failure
§ Not efficient – performance bottleneck
§ Not very available, does not provide longevity, etc…

5

Sharing Memory in a Networked System

q  So we replicate – we’d have to anyway, since redundancy
is the only means for providing fault-tolerance

6

Sharing Memory in a Networked System

q  With replication come challenges:
§ How to preserve consistency while managing replicas?
§ What kind of consistency?
§ How to provide it?
§ How to use it?

7

Consistency

q  Easiest for users: a single copy view
§  Sequence of operations; a read sees the previous write
§ Atomicity [Lamport] or linearizability [Herlihy Wing]

§ Not cheap to implement even without general updates
q  Cheapest to implement: a read sees a subset of prior writes

§ Not the most natural semantic for the users
q  Additional complications in dynamic systems

§  Ever-changing sets of replicas and participants
§ Crashes never stop, timing variations persist
§  Evolving topology
§ Ultimately mobility

8

Atomicity / Linearizability [Lamport / Herlihy Wing]

q  “Shrink” the interval of each operation to a
serialization point so that the behavior of the
object is consistent with its sequential type

þ�
�
ý�
 �
 �
þ

read(0)

write(8)

read(8)

Time

read(8)

read(0)

write(8)

read(8)

Time

read(0)

write(8)

read(8)

Time

9

Consistency Polemics

q  Parallel/Distrib. architectures
§  Performance
§  Speed-up

q  Distributed theory focus
§  Fault-tolerance
§ Consistency

q  User:

Yes,

mine is wrong…
But it is fast!

Yes,
mine is slow…

But it is correct!

Can’t they get along?

10

Using Majorities/Quorums for Consistency

q  Consistency of replicated data: using intersecting sets
§  Starting with Gifford (79) and Thomas (79)
§ Upfal and Wigderson (85)

w Majority sets of readers and writers emulate shared
memory in a synchronous distributed setting

§  Vitanyi and Awerbuch (86)
w MW/MR registers using matrices of SW/SR registers

where rows and columns are read and written
§  Attiya, Bar-Noy, and Dolev (91/95, 2011 Dijkstra Prize)

w Atomic SW/MR objects in message passing systems,
majorities of processors, minority may crash

w Two-phase protocol (ABD)

11

Related Other Approaches

q  Using specialized communication primitives
[Imbs, Mostéfaoui, Perrin, Raynal – NETYS 2017]
§  Set constrained delivery broadcast
§  Leading to a snapshot implementation
§ Ultimately atomic read/write objects

q  Using consensus to agree on each operation [Lamport]
§  Performance overhead for each reads and write op
§  Termination of operations depends on consensus

q  Use group communication service [Birman 87] with TO bcast
 [Amir, Dolev, Melliar-Smith, Moser 94], [Keidar, Dolev 96]

§  View change delays reads/writes
§ One change may trigger view formation

12

Quorum Systems and Examples

A C

B

Majorities
[Thomas79,Gifford79]

Matrix Quorums:
Processor ids arranged in a matrix.

A quorum: Row U Column

Quorum system Q over P,
a set of processor ids:
Q = {Q1, Q2, … }
•  Qi ⊆ P
•  Qi ∩ Qj ≠ Ø for all i, j

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Lemma:
The join of quorum
system Qa over Pa and
system Qb over Pb ,
Qa � Qb , is a quorum
system over Pa U Pb .

13

Main Idea: Timestamps (logical) and Quorums

q  An object is represented by a pair (value, timestamp)
q  A write records (new-value, new-timestamp) in a quorum
q  A read obtains (value, timestamp) pairs from a quorum,

then returns the value with the largest timestamp

read(vmax) write(v1)
(v1,t1)

write read

Time

14

يجب�على�القارئ�الكتابة
q  If operations are concurrent and a reader simply returns

the latest value, then atomicity can be violated:

q  Solution: “Readers must write”: If readers first help the

writer to record the value in a quorum, then it is safe to
return the latest value

 Write(v1)

v1

Read -- returns v1 Read -- returns v0

3: v0
2: v0
1: v0

15

The Read Algorithm [ABD]

16

Lastly: “Riders... uhm... Writers Must Read”

I assume you’re
being facetious, Professor,
 I distinctly yelled �second�

before you did!

•  Writers must “read”
before writing (and riding)
to obtain the latest
timestamp in order to
compute a new timestamp

17

The Complete Algorithm [ABD, as in LS’97]

•  Replica hosts respond
to Get and Put requests

•  Any minority may crash

•  Read and write uses identical two-phase communication patterns:
•  Get phase: query and obtain values from a majority (quorum),
•  Put phase: propagate values to a majority (quorum).
•  The only difference is in what is sent out in the Put phase.

18

Latency of Atomic Reads and Writes

q  Network latency is key in assessing efficiency
§  Let d be the max latency (unknown to the algorithm)
§  1 message exchange incurs delay d
§  1 round-trip exchange = 2 message exchanges = 2 d

q  Single-Writer/Multiple Readers (SWMR)
§ Read latency = 4d : 2 round-trips = 4 exchanges
§ Write latency = 2d : 1 round-trip = 2 exchanges

q  Multiple-Writers/Multiple Readers(MWMR)
§ Read latency = 4d : 2 round-trips = 4 exchanges
§ Write latency = 4d : 2 round-trips = 4 exchanges

q  Can we have 2-exchange reads?

19

SWMR: Reads and Writes with 2d Latency

q  Conditions for enabling fast operations -- latency 2d
§  [Dutta, Guerraoui, Levi, Chakraborty 2004]

q  SWMR atomic registers
§  Both reads and writes take 2 exchanges
§  The maximum number of readers R must be

constrained wrt to the number of replica servers S, and
the number of server crashes F : R < (S/F) – 2

§  Again, exploiting intersection properties
q  Impossibility result for MWMR

§  Fast implementations are impossible when F ≥ 1

19

20

MWMR: Can some Reads have Latency 2d?

q  It is possible for reads to terminate early, in 2 exchanges
§  [Dolev, Gilbert, Lynch, S., Welch 2005]

q  If after first phase there is a majority of servers reporting
the same latest tag (timestamp)
§  Then second phase is unnecessary

q  More generally: Maintain a set of confirmed tags
§ Gossip in the background, or piggyback to messages
§  If a tag is confirmed, then second phase is not needed

q  Can one examine the properties of the set of responses
and establish conditions under which operations can be
fast, i.e., taking 2 exchanges?

21

“Semifast” Implementations
[Georgiou, Nicolaou, S. 06, 09]

q  Atomic SWMR memory with unbounded number of readers
§ Group multiple writers into “virtual nodes”
§  Examine the properties of collected server responses

q  Results
§ Writes are fast: 2 exchanges (1 round), with latency 2d
§ Reads perform 2 or 4 exchanges (1 or 2 rounds), with

latency 2d or 4d
§ Only a single complete slow read per write operation

w Any read that precedes or succeeds the slow read and
returns the same value is fast

§  There exists an execution with only fast operations
§ Holds for F < S / 3

22

“Weak Semi-Fast” Implementations

q  Theorem: [GNS09] It is not possible to devise a MWMR
semi-fast implementation even with W=2, R=2 and F=1.

q  Define Weak Semi-Fast property
§  Allows multiple slow – latency 4d – reads per write

q  Introduce SSO: Server Side Ordering [GNS 2011]
§  Tag is incremented by the servers and not by the writer.
§ Generated tags may be different across servers
§ Clients decide operation ordering based on server

responses
q  Use algorithms with n-wise quorums

§  Any n quorums have non-empty intersection

23

“Weak Semi-Fast” Algorithm [GMS11]

q  Write: Send v and gather candidate tags from a quorum
§  Exists tag t in > (n/2)--wise intersection

w YES – assign t to the written value and return – FAST: 2d
w NO – propagate unique largest tag to a quorum – SLOW: 4d

q  Read: Collect list of writes and tags from a quorum
§  Exists max tag t in >(n/2)--wise intersection

w YES – return the value written by that write – FAST: 2d
w NO – propagate largest confirmed tag to a quorum – SLOW: 4d

q  Simulations show that savings can be substantial
§ Only 15% slow operations in some scenarios

24

What about Operations with 3 exchanges?
[Hadjistasi, Nicolaou, S. -- NETYS’2017]

q  Oh-RAM! “One and a half Round Atomic Memory”
q  Protocol idea to obtain operations with latency 3d

§  1st exchange: operation invoker contacts servers
§  2nd exchange: servers gossip
§  3rd exchange: servers respond to the invoker

q  Impossibility of 3 exchange MWMR memory [TNS’17]
§ No atomic implementations exist where all operations

use 3 exchanges, even with a single server crash
q  Our algorithms

Model	 Read	Exch	 Write	Exch	 Read	Comm	 Write	Comm	

SWMR	 2	or	3	 2	 S2	+	3S	 2	S	

MWMR	 2	or	3	 4	 S2	+	3S	 4	S	

25

Dynamic Atomic Memory

q  Goal: Atomic Objects in Dynamic Settings
q  �Dynamic� encompasses

§ Changing sets of participants:
nodes come and go as they please

§ Wide range of failures
§  Asynchrony, timing variations
§ Crashes, message loss, weak delivery guarantees
§ Changes in network topology
§  Processor mobility

q  Our solution: RAMBO
§ Reconfigurable Atomic Memory for Basic Objects

[Lynch Schwarzmann]

26

RAMBO: Approach

q  Objects are replicated at several network locations
q  To accommodate small, transient changes:

§ Use quorum configurations: members, quorums
§ Maintains atomicity during �normal operation�
§  Allows concurrency

q  To handle larger, more permanent changes:
§ Reconfigure: emit and use new configurations
§ Use consensus to impose total order (Paxos)
§ Maintains atomicity across configuration changes
§  Any configuration can be installed at any time
§ Reconfigure concurrently with reads/writes --

operations do not depend on view change completion

27

Reconfigurable Atomic Memory for Basic Objects

q  Global service specification
q  Implementation:

Main algorithm + �recon� service
q  Recon service:

§  “Advance reconnaissance”
§ Consistent sequence of configurations
§  Loosely coupled

q  Main algorithm:
§ Reading, writing
§ Receives, disseminates new configuration

information; no explicit installation
§ Reconfigures: upgrade to new and remove old
§ Reads/writes may use several configurations

Net

RAMBO

Recon

RAMBO

28

Configurations and Reconfiguration

q  Configuration: quorum system
§ Collection of subsets of replica host ids

where any two subsets intersect
§  (Alternatively: read- and write-quorums, where any

read-quorum intersects any write-quorum)
q  Reconfiguration process involves two decoupled steps

§ Recon: Emit a new configuration; then later…
§ Garbage-collect obsolete configurations locally and

“upgrade” to the latest known configuration
§ No constraints on memberships of quorum systems
 Q1 Q2 Q3

…

29

Architectural View

Communication Network

Node i

Joineri

R/Wi

Node j

Recon

Joinerj

R/Wj

Application

RAMBO

30

High-Level Functions

q  Joiner
§  Introduces new participants to the system

q  Reader-Writer
§ Routine read and write operations
§  Two-phase algorithm using all �known� configurations
§ Using tags to time-stamp (and order) written values

q  Recon
§ Chooses new next configuration, e.g., using Paxos
§  Informs the members of the current configuration

q  Configuration upgrade (�packaged� with Reader-Writer)
§  Identify and remove obsolete configurations

(garbage collection)

31

Consensus

Recon

Net

Implementation of Recon

q  Uses consensus to determine
new configurations 1,2,3,…
§ Note: when the universe

of configurations is
finite and known, then
consensus is not needed
even with unbounded
reconfiguration [GeoQuorums]

q  Members of existing configuration(s)
may propose a new configuration

q  Proposals reconciled using consensus
q  Consensus is a fairly heavy mechanism, but it is

§ Used only for reconfigurations, which are infrequent
§ Does not block or abort Read and Write operations

32

Configurations and Config Maps

q  Configuration c
§ members(c) -- set of members of configuration c
§  read-quorums(c), write-quorums(c) -- sets of quorums

q  Configuration map cm
§ mapping from naturals to configurations
§  cm(k) is configuration k
§ Can be defined (c), undefined (⊥), garbage-collected (±)

± ± c c c ⊥ c ⊥ ... ⊥ ...

 GC�d Defined Mixed Undefined

c

33

Configuration Map Changes (Local View)

c0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

c0 c1
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

c0 c1 c2
⊥ ⊥ ⊥ ck

⊥ ⊥ ⊥ ⊥

± c1 c2
⊥ ⊥ ⊥ ck

⊥ ⊥ ⊥ ⊥

± ± c2
⊥ ⊥ ⊥ ck

⊥ ⊥ ⊥ ⊥

TIME

. . .

. . .

. . .

. . .

. . .

± ± ± c3
⊥ ⊥ ck

⊥ ⊥ ⊥ ⊥ . . .

± ± ± ± ± c c c ⊥ c ⊥ . . .

. . .

34

Configuration Upgrade [Gilbert, Lynch, S 10]

q  Reconfigure to last configuration in a contiguous segment

q  Phase 1:

§  Informs write-quorum of cj … ck-1 about ck
§ Collects (value,tag) from read-quorums of cj … ck-1

q  Phase 2:
§  Propagates latest (value, tag) to a write-quorum of ck
§ Garbage-collect: Set cmap(j…k -1) to ±

q  Constant-time upgrade regardless of the number of
obsolete configurations (conditioned on failures)

q  Maintains good read/write latency during system instability
or frequent reconfigurations

± cj . . . ck ⊥

35

On to Reads and Writes: Values and Tags

q  Each value v has an associated tag t (logical timestamp)
§  Tag is made up of the sequence-processor pair

q  Reads:
§  a set of value-tag pairs is obtained
§  the result is the value with the maximum tag

q  Writes:
§  a set of value-tag pairs is obtained
§  new-value is propagated with a new-tag that is a

lexicographic increment of tag :

 new-tag := 〈tag.seq + 1, pid 〉

36

Dynamic Reader-Writer and Recon

q  The work is split between Reader-Writer and Recon
q  Recon emits consistent configurations
q  Reader-Writer processes run two-phase quorum-based

algorithm, with all �active� configurations
q  Background �gossip� builds fixed-points
q  If Recon emits new configuration, Reader-Writer continues

reads/writes in progress, until fixed-point is reached

Net

R/Wi Recon R/Wj

37

Processing Reads and Writes

q  Reads and Writes perform Query and Propagation phases
using known configurations, stored in op.cmap.
§ Query: Gets latest value, tag, and cmap information from

read-quorums
§  Propagation: Gives latest (value,tag) to write-quorums
§  Both phases: Extend op.cmap with newly-discovered

configurations that now must also be involved.
q  Each phase ends with a fixed point, involving all the

configurations currently in op.cmap

Read or Write

Propagation Phase Query Phase

Start
Query

Start
Prop

End

Query

End
Prop

38

Methodology

q  Algorithms are presented formally,
using interacting state machine
models: Input/Output automata
§  service specifications
§  algorithm descriptions
§ models for applications

q  Safety: rigorous proof of correctness (atomicity) for
arbitrary patterns of asynchrony and change

q  Conditional performance analysis
§  E.g., when message latency < d, quorum configurations

are “viable”, then read and write operations take time
between 4d and 8d, under reasonable “steady-state”
assumptions.

…

Net

…

39

Example Spec: Asynchronous Lossy Channel

Input sendi,j(m) Output recvj,i(m)

Internal lose(m)

Channeli,j

•  Input Output Automata  
[Lynch & Tuttle]

•  Supports: composition, 
abstraction, rigorous  
reasoning

•  100’s algorithms

40

Details: Reader-Writer: Send and Recv Code

Specification of
gossip using
Input/Output
Automata of
[Lynch Tuttle]

Send

 Receive

41

Details: Reader-Writer Fixed Points

Phase 1 fixed point

Specification of
fixed points using Input/
Output Automata

Phase 2 fixed point

42

Some Latency Analysis Results

q  Restrict attention to a subset of timed executions
§ Reminder: Read and write operations are not affected

by Recon delays or Recon non-termination
q  Configuration upgrade (garbage collection) takes 4d
q  If reconfigurations are �rare� -- operations take 4d
q  If configurations are in �steady state� -- operations take 8d
q  Logarithmic in number of configurations time �catch-up�

after a burst of �bad timing behavior�
§  A recovering node joins quickly after a long absence

43

Implementation

q  Experimental system implementations [Musial 07]
§  Platform for refinement, optimization, tuning
§ Observe of algorithms in a local area setting
§ Cluster with 16+/- Linux machines & fast switch

q  Developed by manually translating the Input/Output
Automata specification to Java code
§  Precise rules are followed to mitigate error introduction

during translation

§ Rigorous proofs [Georgiou, Musial, S., Sonderegger 07, 11]

q  Next steps:
§  Specification in Tempo [Lynch Michel S 08] (Timed IOA)
§ Code generation ([Georgiou Lynch Mavrommatis Tauber 09])

44

Optimization and Development Methodology

Atomicity
properties

Abstract
Rambo

Rambo
with graceful
departures

Long-Lived
Rambo

Proof

 Derivation Running
System

Simulation

Simulation
Manual derivation

[Musial 07]
or

semi-automated
code generation

[Georgiou + 09,10]

[Lynch, S 02]
[Gilbert, L, S 10]

[Georgiou,
Musial,

S 04, 06]

45

Optimization: Improving performance

q  Long-Lived RAMBO: Graceful Leave + Incremental Gossip
§ Rigorous proof of correctness by simulation
§  Performance study

§  [Georgiou, Musial, S. 06]

46

Complete Shared Memory

q  Atomicity is compositional
§  Implement a single memory location
§ Get a complete shared memory by running several

implementations: correct, but very slow!
q  Domain-oriented reconfigurable atomic memory

§ Optimizing performance for groups of related objects

- Composition

- Domain

[Georgiou, Musial, S. 2009]

47

Federated Array of Bricks (FAB)

q  Storage system developed and evaluated at HP Labs
§  [Saito Frølund Veitch Merchant Spence 05]

q  Distributes workload and handles failures and recoveries
without disturbing client requests

q  Read or write protocol involves majority quorums of
storage “bricks” following the Rambo algorithm

q  Evaluations of the implementation showed
§  FAB performance is similar to centralized solutions,
§ While offering at the same time continuous service and

high availability

48

Additional Solutions

q  Atila: Atomicity Through Indirect Learning Algorithm
§  Indirect learning enables progress without routing or

complete connectivity [Konwar, Musial, Nicolaou, S. 07]

q  RDS [Chockler, Gilbert, Gramoli, Musial, S. 09]
§ Reconfigurable Distributed Storage: Rambo ⊕ Paxos
§  Integrate configuration upgrade with installation
§ Obsolete configuration are removed quicker

q  DynaStore: Reconfiguration without consensus
[Aguilera, Keidar, Malkhi, Shraer 11]
§  Initial quorum system, incremental adds/removes
§ Changes yield DAGs of possibilities
§ Reads/writes use ABD-like phases, traverse DAGs
§  Termination: assumes finite reconfigurations

49

DynaDisk Implementation

q  Data-center read/write storage system
§  Allows add/remove of storage devices on-the-fly
§  Based on DynaStore, but with and without consensus
§  [Shraer Martin Malkhi Keidar 10]

50

GeoQuorums

q  Dynamic atomic read/write memory for mobile settings
§  [Dolev, Gilbert, Lynch, S., Welch 04, 05]

§ Use Rambo architecture over Virtual Node layer
q  Nodes: fixed geographical locations called Focal Points

§ Centers of populated, compact geographical areas:
w  Traffic intersections, buildings, bridges, points-of-interest

§ Continuously populated, thus able to maintain state
q  Implementations:

§  Virtual Node layer over the physical mobile network
§  Atomic read/write memory over the Virtual Node layer

51

GeoQuorums

q  Mobile nodes
q  Focal points –

implemented as
Virtual Nodes

q  Quorums are defined
over focal points

q  Use GPS as timestamps
q  Fast(er) read/write operations

§  Single phase writes – two exchanges
§ One or two phase reads – two or four exchanges

q  Simplified, consensus-free, reconfiguration
§  Two-phase algorithm using fixed configurations
§ Can be motivated by performance: e.g., if writes are

frequent, install smaller write quorums

52

Closing Remarks: Read-Modify-Write

q  RMW is strictly stronger than atomic read/write object
q  Some storage systems implement atomic RMW operations

§  Expensive, and requires at its core atomic updates
q  Examples

§ Reduce parts of the system to a single-writer model
w  e.g., Microsoft’s Azure

§ Depend on clock synchronization hardware
w Google’s Spanner

§ Rely on complex mechanisms for resolving event
ordering such as vector clocks
w Amazon’s Dynamo

53

Thank You!

Questions and Discussion

?

