NETYS 2017, Marrakech, Morocco

'

0 “Three R’s” -- Reading, w’Riting, and a’Rithmetic
" Underlay much of human intellectual activity
" Venerable foundation of computing technology
a With networking, communication became a major activity
" Email — electronic counterpart of postal service
QO Yet, it is natural to deal with reading, writing, and computing

" A web browser app may load (i.e., read) a page,
perform computation, and save (i.e., write) the results

" |n distributed databases we refrieve and store data, and
rarely talk about sending and receiving data

O Arguably, it is also easier to develop distributed algorithms
with readable/writeable objects, than to use message passing

oluall , LS, 301,

3

Sharing Memory in a Networked System

QO Let's place a shareable object at a node in a network
" Not fault-tolerant — single point of failure
" Not efficient — performance bottleneck
" Not very available, does not provide longevity, etc...

Sharing Memory in a Networked System

0 So we replicate — we'd have to anyway, since redundancy
Is the only means for providing fault-tolerance

L

Sharing Memory in a Networked System

0 With replication come challenges:
" How to preserve consistency while managing replicas?
" What kind of consistency?
" How to provide it?
= How to use it? ‘

o

0 Easiest for users: a single copy view
® Sequence of operations; a read sees the previous write
= Atomicity [Lamport] or linearizability [Herlihy Wing]
" Not cheap to implement even without general updates
0 Cheapest to implement: a read sees a subset of prior writes
" Not the most natural semantic for the users
0 Additional complications in dynamic systems
" Ever-changing sets of replicas and participants
" Crashes never stop, timing variations persist
" Evolving topology
= Ultimately mobility

g gl Atomicity / Linearizability [Lamport / Herlihy Wing)

0 “Shrink” the interval of each operation to a
serialization point so that the behavior of the
object is consistent with its sequential type

write(8‘)k \
" " " Tim
* * * >
read(0) read(8)
write(8)
Timg,
read(8) read(0)
write(8)
* Timg,
x|
read(8) a'
read(0) /
8

Consistency Polemics

0 Distributed theory focus 0O Parallel/Distrib. architectures

" Fault-tolerance " Performance

" Consistency " Speed-up

: == \

g Yes LCE

.. ,I mine is wrong...
MINE 1S STOW... But it is fast!
But it is correct!)
\C
a0 User:

Using Majorities/Quorums for Consistency

0 Consistency of replicated data: using intersecting sets
= Starting with Gifford (79) and Thomas (79)
" Upfal and Wigderson (85)

+ Majority sets of readers and writers emulate shared
memory in a synchronous distributed setting

" Vitanyi and Awerbuch (86)

* MW/MR registers using matrices of SW/SR registers
where rows and columns are read and written

" Attiya, Bar-Noy, and Dolev (91/95, 2011 Dijkstra Prize)

+ Atomic SW/MR objects in message passing systems,
majorities of processors, minority may crash

* Two-phase protocol (ABD)

10

g Related Other Approaches

0 Using specialized communication primitives
[Imbs, Mostéfaoui, Perrin, Raynal - NETYS 2017]

" Set constrained delivery broadcast
" | eading to a snapshot implementation
" Ultimately atomic read/write objects

a Using consensus to agree on each operation [Lamport]
" Performance overhead for each reads and write op
" Termination of operations depends on consensus

0 Use group communication service [Birman 87] with TO bcast
[Amir, Dolev, Melliar-Smith, Moser 94], [Keidar, Dolev 96]

" View change delays reads/writes
" One change may trigger view formation

11

Quorum system Q over P,
a set of processor ids:

" Quorum Systems and Examples

Q={Q, Q,, ... }
. QCP
- QNQ#Yforalli,j
Majorities
1 3 4. [Thomas79,Gifford79]
Lemma:
> 11 | 1= The join of quorum
15 gkl 10 | 16 system Q, over P, and

- system Q, over P, ,
Matrix Quorums: y Qb b

Processor ids arranged in a matrix. Q, = Q, is aquorum
A quorum: Row U Column system over P, U P, .

12

gt Main ldea: Timestamps (logical) and Quorums

0 An object is represented by a pair (value, timestamp)
O A write records (new-value, new-timestamp) in a quorum

0 A read obtains (value, timestamp) pairs from a quorum,
then returns the value with the largest timestamp

write(v))

write read 13

o LUSH g, gl

0 If operations are concurrent and a reader simply returns
the latest value, then atomicity can be violated:

Read -- returns v, | Read -- returns v,
. N\
)V N/ N\
S 7 /7

/)

Write(v;)

0 Solution: “Readers must write”: If readers first help the
writer to record the value in a quorum, then it is safe to
return the latest value

14

" The Read Algorithm [ABD)

read;(v : output)

Get: Broadcast (get,) to all replica hosts.
Await responses (get-ack,val,tag) from
some majority of replicas.

Let v be the value that corresponds to
the maximum tag maxtag received.

Put: Broadcast (put,v, mazxtag,i) to all replica hosts.
Await responses (put-ack, v, maztag)
from some majority of replicas.

15

gt alb Lastly: “Riders... uhm... Writers Must Read”

| assume you're
being facetious, Professor,
| distinctly yelled ‘second’
before you did!

* Writers must “read”
before writing (and riding)
to obtain the latest
timestamp in order to
compute a new timestamp

16

gi g The Complete Algorithm [ABD, as in LS'97]

read;(v : output)

Get: Broadcast (get,) to all replica hosts.
Await responses (get-ack,val,tag) from
some majority of replicas.

Let v be the value that corresponds to
the maximum tag maxtag received.

Put: Broadcast (put,v, maztag,i) to all replica hosts.
Await responses (put-ack,v, maztag)
from some majority of replicas.

write; (v : input)

Get:

Put:

Broadcast (get, i) to all replica hosts.

Await responses (get-ack, val,tag) from

some majority of replicas.

Let maztag = (seq,pid) be the maximim tag received.
Set newtag = (seq + 1,1).

Broadcast (put, v, newtag, i) to all replica hosts.
Await responses (put-ack, v, newtag)
from some majority of replicas.

 Read and write uses identical two-phase communication patterns:
« Get phase: query and obtain values from a majority (quorum),
 Put phase: propagate values to a majority (quorum).

« The only difference is in what is sent out in the Put phase.

Upon receive({get, j)) at i
Send (get-ack,value;,tag;) to j.

Upon receive({put,v,t,j)) at i
If t > tag; then Set value; to v and tag; to t.
Send (put-ack,v,t) to j.

« Replica hosts respond
to Get and Put requests
* Any minority may crash

17

Latency of Atomic Reads and Writes

0 Network latency is key in assessing efficiency
" Let d be the max latency (unknown to the algorithm)
" 1 message exchange incurs delay d
" 1 round-trip exchange = 2 message exchanges =2 d
0 Single-Writer/Multiple Readers (SWMR)
" Read latency = 4d : 2 round-trips = 4 exchanges
" Write latency = 2d : 1 round-trip = 2 exchanges
a Multiple-Writers/Multiple Readers(MWMR)
" Read latency = 4d : 2 round-trips = 4 exchanges
" Write latency = 4d : 2 round-trips = 4 exchanges
0 Can we have 2-exchange reads?

18

SWMR: Reads and Writes with 2d Latency

0 Conditions for enabling fast operations -- latency 2d
" [Dutta, Guerraoui, Levi, Chakraborty 2004]

0 SWMR atomic registers
" Both reads and writes take 2 exchanges

" The maximum number of readers R must be
constrained wrt to the number of replica servers S, and
the number of server crashes F: R<(S/F) -2

" Again, exploiting intersection properties
a Impossibility result for MWMR
" Fast implementations are impossible when F = 1

19

" a MWMR: Can some Reads have Latency 2d?

0 It is possible for reads to terminate early, in 2 exchanges
" [Dolev, Gilbert, Lynch, S., Welch 2005]

Q If after first phase there is a majority of servers reporting
the same latest tag (timestamp)

" Then second phase is unnecessary
O More generally: Maintain a set of confirmed tags
® Gossip in the background, or piggyback to messages
" |f a tag is confirmed, then second phase is not needed

0 Can one examine the properties of the set of responses
and establish conditions under which operations can be
fast, i.e., taking 2 exchanges?

20

“Semifast” Implementations

[Georgiou, Nicolaou, S. 06, 09]

0 Atomic SWMR memory with unbounded number of readers
" Group multiple writers into “virtual nodes”
" Examine the properties of collected server responses

0 Results
" Writes are fast: 2 exchanges (1 round), with latency 2d

" Reads perform 2 or 4 exchanges (1 or 2 rounds), with
latency 2d or 4d

" Only a single complete slow read per write operation

+ Any read that precedes or succeeds the slow read and
returns the same value is fast

" There exists an execution with only fast operations
" Holdsfor F<S/3

21

. “Weak Semi-Fast”’ Implementations

O Theorem: [GNS09] It is not possible to devise a MWMR
semi-fast implementation even with W=2, R=2 and F=1.

0 Define Weak Semi-Fast property
= Allows multiple slow — latency 4d — reads per write

0 Introduce SSO: Server Side Ordering [GNS 2011]
" Tag is incremented by the servers and not by the writer.
" Generated tags may be different across servers

" Clients decide operation ordering based on server
responses

O Use algorithms with n-wise quorums
" Any n quorums have non-empty intersection

22

“Weak Semi-Fast” Algorithm [GMS11]

0 Write: Send v and gather candidate tags from a quorum

" Exists tag tin > (n/2)--wise intersection
¢+ YES — assign t to the written value and return - FAST: 2d
+ NO - propagate unique largest tag to a quorum - SLOW: 4d

0 Read: Collect list of writes and tags from a quorum

" Exists max tag tin >(n/2)--wise intersection

¢ YES — return the value written by that write - FAST: 2d
+ NO - propagate largest confirmed tag to a quorum - SLOW: 4d

0 Simulations show that savings can be substantial
" Only 15% slow operations in some scenarios

23

o What about Operations with 3 exchanges?

[Hadjistasi, Nicolaou, S. -- NETYS’2017]

0 Oh-RAM! “One and a half Round Atomic Memory”

0O Protocol idea to obtain operations with latency 3d
= 1st exchange: operation invoker contacts servers
= 2nd exchange: servers gossip
= 3rd exchange: servers respond to the invoker
a Impossibility of 3 exchange MWMR memory [TNS’17]

" No atomic implementations exist where all operations
use 3 exchanges, even with a single server crash

Q Our algorithms

Model Read Exch Write Exch Read Comm Write Comm

SWMR 2or3 2 S2+ 3S 2S

MWMR 2or3 4 S2+3S 4S

24

Dynamic Atomic Memory

0 Goal: Atomic Objects in Dynamic Settings
0 “Dynamic” encompasses

" Changing sets of participants:
nodes come and go as they please

" Wide range of failures
" Asynchrony, timing variations
" Crashes, message loss, weak delivery guarantees
" Changes in network topology
" Processor mobility
Q Our solution: RAMBO
" Reconfigurable Atomic Memory for Basic Objects
[Lynch Schwarzmann]

25

" RAMBO: Approach

0 Objects are replicated at several network locations
O To accommodate small, transient changes:
® Use quorum configurations: members, quorums
= Maintains atomicity during “normal operation”
" Allows concurrency
O To handle larger, more permanent changes:
" Reconfigure: emit and use new configurations
" Use consensus to impose total order (Paxos)
" Maintains atomicity across configuration changes
" Any configuration can be installed at any time

" Reconfigure concurrently with reads/writes --
operations do not depend on view change completion

26

Reconfigurable Atomic Memory for Basic Objects

0 Global service specification

O Implementation:
Main algorithm + “recon” service

0 Recon service:
" “Advance reconnaissance’
® Consistent sequence of configurations
" Loosely coupled
2 Main algorithm:
" Reading, writing
" Receives, disseminates new configuration
information; no explicit installation
" Reconfigures: upgrade to new and remove old
" Reads/writes may use several configurations

27

Configurations and Reconfiguration

0 Configuration: quorum system
" Collection of subsets of replica host ids
where any two subsets intersect

" (Alternatively: read- and write-quorums, where any
read-quorum intersects any write-quorum)

0 Reconfiguration process involves two decoupled steps
" Recon: Emit a new configuration; then later...

" (Garbage-collect obsolete configurations locally and
“upgrade” to the latest known configuration

" No constraints on memberships of quorum systems

Q /) Q, ~
B B

28

. Architectural View

Application
/ Node 1 RAMBO Node ; \
Joiner, Joiner;
N B
RIW, | — Recon R/W.

S —

Communication Network

29

High-Level Functions

Q Joiner
" |ntroduces new participants to the system
0 Reader-Writer
" Routine read and write operations
" Two-phase algorithm using all “known” configurations
" Using tags to time-stamp (and order) written values
O Recon
" Chooses new next configuration, e.g., using Paxos
" |Informs the members of the current configuration
0 Configuration upgrade (“packaged” with Reader-Writer)

" |dentify and remove obsolete configurations
(garbage collection)

30

Implementation of Recon

O Uses consensus to determine
new configurations 1,2,3,...

" Note: when the universe
of configurations is
finite and known, then
consensus is not needed
even with unbounded
reconfiguration [GeoQuorums]

O Members of existing configuration(s)
may propose a new configuration

0 Proposals reconciled using consensus

O Consensus is a fairly heavy mechanism, but it is
" Used only for reconfigurations, which are infrequent
" Does not block or abort Read and Write operations

31

" " Configurations and Config Maps

0 Configuration C

" members(c) -- set of members of configuration ¢
" read-quorums(c), write-quorums(c) -- sets of quorums

0 Configuration map Cm
" mapping from naturals to configurations

" cm(k) is configuration &
" Can be defined (c), undefined (L), garbage-collected (+)

cilclcl|LlicllLli|...ic|dL

GC' d Defined Mixed Undefined

32

Configuration Map Changes (Local View)

CO L1y L L{Ljy L] Lf{LflL

Cole, | L|L|L|L]L|L|L]L]L
c,lclc,|L|L]Ljg|L|L]L]|L

TIME

+ic|c,|L|L]|L|c|L]L]L]L
+|+|c,|L|L]|L]c|L]L]L]L

+ | +x x|C,|L|L|C | L|L|L]L] T \/
+ £+ x|x/CcjCc|Cc|L|C|L]| T

33

Configuration Upgrade [Gilbert, Lynch, S 10}

0 Reconfigure to last configuration in a contiguous segment

e o o 0 ci S5O0 ck e o o J_ e o o

0 Phase 1:

" Informs write-quorum of ¢; ... ¢, _; about ¢,

" Collects (value,tag) from read-quorums of ¢; ... ¢, ,
0 Phase 2:

" Propagates latest (value, tag) to a write-quorum of ¢,

" Garbage-collect: Set cmap(j...k -1) to +

0 Constant-time upgrade regardless of the number of
obsolete configurations (conditioned on failures)

0 Maintains good read/write latency during system instability
or frequent reconfigurations

34

On to Reads and Writes: Values and Tags

0 Each value v has an associated tag t (logical timestamp)
" Tag is made up of the sequence-processor pair
0 Reads:
" a set of value-tag pairs is obtained
" the result is the value with the maximum tag
a Writes:
" a set of value-tag pairs is obtained
" new-value is propagated with a new-tag that is a
lexicographic increment of tag :

new-tag := (tag.seq + 1, pid)

35

Dynamic Reader-Writer and Recon

0 The work is split between Reader-Writer and Recon
0 Recon emits consistent configurations

0 Reader-Writer processes run two-phase quorum-based
algorithm, with all “active” configurations

0 Background “gossip” builds fixed-points

0 If Recon emits new configuration, Reader-Writer continues
reads/writes in progress, until fixed-point is reached

36

" Processing Reads and Writes

0 Reads and Writes perform Query and Propagation phases
using known configurations, stored in op.cmap.

" Query: Gets latest value, tag, and cmap information from
read-quorums

" Propagation: Gives latest (value,tag) to write-quorums

" Both phases: Extend op.cmap with newly-discovered
configurations that now must also be involved.

0 Each phase ends with a fixed point, involving all the
configurations currently in op.cmap

4))
Read or Write
Query Phase Propagation Phase
Start End Start End

. Methodology

a Algorithms are presented formally,
using interacting state machine
models: Input/Output automata

" service specifications
" algorithm descriptions
" models for applications

0 Safety: rigorous proof of correctness (atomicity) for
arbitrary patterns of asynchrony and change

0 Conditional performance analysis

" E.g., when message latency < d, quorum configurations
are “viable”, then read and write operations take time

between 4d and 8d, under reasonable “steady-state”
assumptions.

38

g= al Example Spec: Asynchronous Lossy Channel

* |nput Output Automata Internal lose(m)
[Lynch & Tuttle]
* Supports: composition,

abstraction, rigorous Input send,; (m) Output recv, (m)
reasoning >
 100’s algorithms
Domains:
I, a set of processes, M, a set of messages
States:
S C M, the set of messages in the channel
Signature:
Input: send(m); ;, m € M,consti,j € I
Output: recv(m); i, m € M,consti,j € [
Internal: lose(m), m € M
Transitions:
Input send(m);_; Output recv(m); ; Internal lose(m)
Effect: Precondition: Precondition:
S — Su{m} me S m e S

Effect: Effect:
S — S —{m} S<—S—{m}39

g" al Details: Reader-Writer: Send and Recv Code

Output send((W, v, t,cm, ni,nj))i. ;

Precondition:
status = active
J € world

<W7 U? t) Cm’ ni’ n]) -
(world, value, tag, cmap, phase-num(i), phase-num(j))

Effect:
none

Send

Specification of
gossip using
Input/Output
Automata of
[Lynch Tuttle]

Input recv((W, v,t,cm, nj, ni));.q
Effect:

if status # idle then Receive

status <— active

world <— world UW

if t > tag then (value, tag) < (v,t)

cmap < update(cmap,cm)

phase-num(j) < max(phase-num(j), nj)

if op.phase € {query,prop} and ni > op.phase-num then
op.cmap < extend(op.cmap, truncate(cm))
if op.cmap € Truncated then op.acc < op.acc U {j}
else op.acc < 0

op.cmap < truncate(cmap)

if gc.phase € {query, prop} and ni > gc.phase-num then

gc.acc < gc.acc U {7}

Internal query-fix;

Precondition:
status = active
op.type € {read, write}
op.phase = query

Effect:

if op.type = read then
op.value < value
else
value < op.value
tag < (tag.seq + 1,1)
pnum-local < pnum-local + 1
op.pnum < pnum-local
op.phase <— prop
op.cmap <— cmap
op.acc + ()

Vk € N,ce C: (op.cmap(k) = c)
= (IR € read-quorums(c) : R C op.acc)

Details: Reader-Writer Fixed Points

Phase 1 fixed point

Phase 2 fixed point

Specification of
fixed points using Input/
Output Automata

Internal prop-fix;
Precondition:
status = active
op.type € {read, write}
op.phase = prop
Vk € Nyce C: (op.cmap(k) = ¢)

= (AW € write-quorums(c) : W C op.acc)
Effect:

op.phase = done

Some Latency Analysis Results

0 Restrict attention to a subset of timed executions

" Reminder: Read and write operations are nof affected
by Recon delays or Recon non-termination

0 Configuration upgrade (garbage collection) takes 4d
0 If reconfigurations are “rare” -- operations take 4d
0 If configurations are in “steady state” -- operations take 8d

0 Logarithmic in number of configurations time “catch-up”
after a burst of “bad timing behavior”

" A recovering node joins quickly after a long absence

42

. Implementation

O Experimental system implementations [Musial 07]
" Platform for refinement, optimization, tuning
" Observe of algorithms in a local area setting
® Cluster with 16+/- Linux machines & fast switch

O Developed by manually translating the Input/Output
Automata specification to Java code

" Precise rules are followed to mitigate error introduction
during translation

" Rigorous proofs [Georgiou, Musial, S., Sonderegger 07, 11]
0 Next steps:

" Specification in Tempo [Lynch Michel S 08] (Timed 10A)

® Code generation ([Georgiou Lynch Mavrommatis Tauber 09])

43

go. b Optimization and Development Methodology

Atomic_ity ér oof Abstract
properhy Rambo

—_—
Manual derivation
[Lynch, S 02] Simulation [Musial 07]
Gilbert, L, S 10] B mba or

semi-automated
code generation
[Georgiou + 09,10]

—_—

Simulation y - ~

[Georgiou,) -
Musial, Long-Lived Derivation Running
S 04, 06] Rambo System

- J

with graceful
departures

44

Optimization: Improving performance

0 Long-Lived RAMBO: Graceful Leave + Incremental Gossip
" Rigorous proof of correctness by simulation

" Performance study

Latency (msec)

Average Gossip Message

(a)

250
~—RAMBO A
200 |-*IGL-RAMBO /
.~"'-"'l“l"
160 - e
.-"'.....
100
.»"I.
50 oy
T

T

"

44 ‘--i“#;.;H_F#.#F‘#._ﬁ‘:.—\
10 510 1010 1510 2010 2510 3010 3510 4010 4510 5010 5510 @010 6510 7010

World Cardinality

Avgerage Opereration Latency (msec)

(b)

16000

14000 4

12000 4

10000 4

20
-

N
-

4

——RAMBO »
- IGL-RAMBO

10 510

1010 1510 2010 2510 3010 3510 4010 4510 5010 5510 6010 6510 7010

World cardinality

" [Georgiou, Musial, S. 06]

45

o Complete Shared Memory

0 Atomicity is compositional
" Implement a single memory location

" Get a complete shared memory by running several
Implementations: correct, but very slow!

0 Domain-oriented reconfigurable atomic memory
" Optimizing performance for groups of related objects

900

300 | [—— Do-Rambo [Georgiou, Musial, S. 2009]
—&— |Xd|-Rambo
700
600
Pl - Composition
% 400 -
g - Domain
3 300

200 4

100 " e A4 L 4 \ 4 v v v v

46

Federated Array of Bricks (FAB)

0 Storage system developed and evaluated at HP Labs
® [Saito Frglund Veitch Merchant Spence 05]

0 Distributes workload and handles failures and recoveries
without disturbing client requests

0 Read or write protocol involves majority quorums of
storage “bricks” following the Rambo algorithm

0 Evaluations of the implementation showed
" FAB performance is similar to centralized solutions,

" While offering at the same time continuous service and
high availability

47

Additional Solutions

a Atila: Atomicity Through Indirect Learning Algorithm

" |ndirect learning enables progress without routing or
complete connectivity [Konwar, Musial, Nicolaou, S. 07]

0 RDS [Chockler, Gilbert, Gramoli, Musial, S. 09]
" Reconfigurable Distributed Storage: Rambo ® Paxos
" |Integrate configuration upgrade with installation
" Obsolete configuration are removed quicker

0 DynaStore: Reconfiguration without consensus
[Aguilera, Keidar, Malkhi, Shraer 11]

" |nitial quorum system, incremental adds/removes
" Changes yield DAGs of possibilities
" Reads/writes use ABD-like phases, traverse DAGs

" Termination: assumes finite reconfigurations
48

DynaDisk Implementation

0 Data-center read/write storage system
" Allows add/remove of storage devices on-the-fly
" Based on DynaStore, but with and without consensus
® [Shraer Martin Malkhi Keidar 10]

600 900
consensus-free 800 | consensus-free
500 B consensus-based
B consensus-based
700 -
400 l 600 [
500
300 -
400 -
200 - 300 -
100 200 I
[o v M
0 ‘ , 0.
s 0 1 2 5 ms. 1 2 5
Number of simultaneous reconfig operations Number of simultaneous reconfig operations
Figure 1: Average write latency. Figure 2: Average reconfig latency.

49

g ceawnms

0 Dynamic atomic read/write memory for mobile settings
" [Dolev, Gilbert, Lynch, S., Welch 04, 05]

" Use Rambo architecture over Virtual Node layer
0 Nodes: fixed geographical locations called Focal Points

" Centers of populated, compact geographical areas:
+ Traffic intersections, buildings, bridges, points-of-interest

" Continuously populated, thus able to maintain state
O Implementations:
" Virtual Node layer over the physical mobile network
" Atomic read/write memory over the Virtual Node layer

50

GeoQuorums

O Mobile nodes O

0 Focal points —
Implemented as
Virtual Nodes

2 Quorums are defined
over focal points

0 Use GPS as timestamps
0 Fast(er) read/write operations

" Single phase writes - two exchanges

" One or two phase reads - two or four exchanges
0 Simplified, consensus-free, reconfiguration

" Two-phase algorithm using fixed configurations

® Can be motivated by performance: e.qg., if writes are
frequent, install smaller write quorums

51

Closing Remarks: Read-Modify-Write

0O RMW is strictly stronger than atomic read/write object

O Some storage systems implement atomic RMW operations
" Expensive, and requires at its core atomic updates

0 Examples

" Reduce parts of the system to a single-writer model
¢ e.g., Microsoft’'s Azure

" Depend on clock synchronization hardware
+ Google’s Spanner

" Rely on complex mechanisms for resolving event
ordering such as vector clocks
¢ Amazon’s Dynamo

52

. Thank You!

Questions and Discussion

%? f

53

