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قراءة ,�كتابة , الحساب� 
q  “Three R’s” -- Reading, w’Riting, and a’Rithmetic 

§ Underlay much of human intellectual activity 
§  Venerable foundation of computing technology 

q  With networking, communication became a major activity 
§  Email – electronic counterpart of postal service 

q  Yet, it is natural to deal with reading, writing, and computing 
§  A web browser app may load (i.e., read) a page,  

perform computation, and save (i.e., write) the results 
§  In distributed databases we retrieve and store data, and 

rarely talk about sending and receiving data 
q  Arguably, it is also easier to develop distributed algorithms 

with readable/writeable objects, than to use message passing 
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Sharing Memory in a Networked System 

q  Let’s place a shareable object at a node in a network 
§ Not fault-tolerant – single point of failure 
§ Not efficient – performance bottleneck 
§ Not very available, does not provide longevity, etc… 
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Sharing Memory in a Networked System 

q  So we replicate – we’d have to anyway, since redundancy 
is the only means for providing fault-tolerance 
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Sharing Memory in a Networked System 

q  With replication come challenges: 
§ How to preserve consistency while managing replicas? 
§ What kind of consistency? 
§ How to provide it? 
§ How to use it? 
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Consistency 

q  Easiest for users: a single copy view 
§  Sequence of operations; a read sees the previous write 
§ Atomicity [Lamport] or linearizability [Herlihy Wing] 

§ Not cheap to implement even without general updates 
q  Cheapest to implement: a read sees a subset of prior writes 

§ Not the most natural semantic for the users 
q  Additional complications in dynamic systems 

§  Ever-changing sets of replicas and participants 
§ Crashes never stop, timing variations persist 
§  Evolving topology 
§ Ultimately mobility 
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Atomicity / Linearizability [Lamport / Herlihy Wing ] 

q  “Shrink” the interval of each operation to a 
serialization point so that the behavior of the 
object is consistent with its sequential type 
 
þ�
�
ý�
 �
 �
þ 

read(0) 

write(8) 

read(8) 

Time 

read(8) 

read(0) 

write(8) 

read(8) 

Time 

read(0) 

write(8) 

read(8) 

Time 



9 

Consistency Polemics 

q  Parallel/Distrib. architectures 
§  Performance 
§  Speed-up 

 
 

q  Distributed theory focus 
§  Fault-tolerance 
§ Consistency 

 
 
 
 
 
 
 

q  User: 
 

 
Yes,  

mine is wrong… 
But it is fast! 

 

Yes,  
mine is slow… 

But it is correct!  

Can’t they get along? 
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Using Majorities/Quorums for Consistency 

q  Consistency of replicated data: using intersecting sets 
§  Starting with Gifford (79) and Thomas (79)  
§ Upfal and Wigderson (85) 

w Majority sets of readers and writers emulate shared 
memory in a synchronous distributed setting 

§  Vitanyi and Awerbuch (86) 
w MW/MR registers using matrices of SW/SR registers 

where rows and columns are read and written 
§  Attiya, Bar-Noy, and Dolev (91/95, 2011 Dijkstra Prize) 

w Atomic SW/MR objects in message passing systems, 
majorities of processors, minority may crash 

w Two-phase protocol (ABD) 
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Related Other Approaches 

q  Using specialized communication primitives 
[Imbs, Mostéfaoui, Perrin, Raynal – NETYS 2017] 
§  Set constrained delivery broadcast 
§  Leading to a snapshot implementation 
§ Ultimately atomic read/write objects  

q  Using consensus to agree on each operation [Lamport] 
§  Performance overhead for each reads and write op 
§  Termination of operations depends on consensus 

q  Use group communication service [Birman 87] with TO bcast 
 [Amir, Dolev, Melliar-Smith, Moser 94], [Keidar, Dolev 96] 

§  View change delays reads/writes 
§ One change may trigger view formation 
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Quorum Systems and Examples 

A C 

B 

Majorities  
[Thomas79,Gifford79] 

Matrix Quorums: 
Processor ids arranged in a matrix. 

A quorum: Row U Column 

Quorum system Q over P,  
a set of processor ids: 
Q = {Q1, Q2, … } 
•  Qi ⊆ P  
•  Qi ∩ Qj ≠ Ø for all i, j 

1 2 3 4 

5 6 7 8 

9 10 11 12 

13 14 15 16 

Lemma:  
The join of quorum  
system Qa over Pa and 
system Qb over Pb , 
Qa � Qb , is a quorum  
system over Pa U Pb . 
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Main Idea: Timestamps (logical) and Quorums 

q  An object is represented by a pair (value, timestamp) 
q  A write records (new-value, new-timestamp) in a quorum 
q  A read obtains (value, timestamp) pairs from a quorum, 

then returns the value with the largest timestamp 

read(vmax) write(v1) 
(v1,t1) 

write read 

Time 
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يجب�على�القارئ�الكتابة 
q  If operations are concurrent and a reader simply returns 

the latest value, then atomicity can be violated: 

 
q  Solution: “Readers must write”: If readers first help the 

writer to record the value in a quorum, then it is safe to 
return the latest value 

          Write(v1)    

v1 

Read -- returns v1 Read -- returns v0 

3: v0 
2: v0 
1: v0 
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The Read Algorithm [ABD] 
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Lastly: “Riders... uhm... Writers Must Read” 

I assume you’re  
being facetious, Professor, 
 I distinctly yelled �second�  

before you did! 

•  Writers must “read”  
before writing (and riding)  
to obtain the latest 
timestamp in order to 
compute a new timestamp 
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The Complete Algorithm [ABD, as in LS’97] 

•  Replica hosts respond  
to Get and Put requests 

•  Any minority may crash 

•  Read and write uses identical two-phase communication patterns: 
•  Get phase: query and obtain values from a majority (quorum),  
•  Put phase: propagate values to a majority (quorum). 
•  The only difference is in what is sent out in the Put phase. 
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Latency of Atomic Reads and Writes 

q  Network latency is key in assessing efficiency 
§  Let d be the max latency (unknown to the algorithm) 
§  1 message exchange incurs delay d 
§  1 round-trip exchange = 2 message exchanges = 2 d 

q  Single-Writer/Multiple Readers (SWMR) 
§ Read latency = 4d : 2 round-trips = 4 exchanges 
§ Write latency = 2d : 1 round-trip = 2 exchanges 

q  Multiple-Writers/Multiple Readers(MWMR) 
§ Read latency = 4d : 2 round-trips = 4 exchanges 
§ Write latency = 4d : 2 round-trips = 4 exchanges 

q  Can we have 2-exchange reads? 
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SWMR: Reads and Writes with 2d Latency 

q  Conditions for enabling fast operations -- latency 2d 
§  [Dutta, Guerraoui, Levi, Chakraborty 2004] 

q   SWMR atomic registers 
§  Both reads and writes take 2 exchanges 
§  The maximum number of readers R must be 

constrained wrt to the number of replica servers S, and 
the number of server crashes F :  R < (S/F) – 2 

§  Again, exploiting intersection properties 
q  Impossibility result for MWMR 

§  Fast implementations are impossible when F ≥ 1 

19 
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MWMR: Can some Reads have Latency 2d? 

q  It is possible for reads to terminate early, in 2 exchanges 
§  [Dolev, Gilbert, Lynch, S., Welch 2005] 

q  If after first phase there is a majority of servers reporting 
the same latest tag (timestamp) 
§  Then second phase is unnecessary 

q  More generally: Maintain a set of confirmed tags 
§ Gossip in the background, or piggyback to messages 
§  If a tag is confirmed, then second phase is not needed 

q  Can one examine the properties of the set of responses 
and establish conditions under which operations can be 
fast, i.e., taking 2 exchanges? 
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“Semifast” Implementations 
[Georgiou, Nicolaou, S. 06, 09] 

q  Atomic SWMR memory with unbounded number of readers 
§ Group multiple writers into “virtual nodes” 
§  Examine the properties of collected server responses 

q  Results 
§ Writes are fast: 2 exchanges (1 round), with latency 2d 
§ Reads perform 2 or 4 exchanges (1 or 2 rounds), with 

latency 2d or 4d 
§ Only a single complete slow read per write operation 

w Any read that precedes or succeeds the slow read and 
returns the same value is fast 

§  There exists an execution with only fast operations 
§ Holds for F < S / 3 
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“Weak Semi-Fast” Implementations 

q  Theorem: [GNS09] It is not possible to devise a MWMR 
semi-fast implementation even with W=2, R=2 and F=1. 

q  Define Weak Semi-Fast property 
§  Allows multiple slow – latency 4d – reads per write 

q  Introduce SSO: Server Side Ordering [GNS 2011] 
§  Tag is incremented by the servers and not by the writer. 
§ Generated tags may be different across servers 
§ Clients decide operation ordering based on server 

responses 
q  Use algorithms with n-wise quorums 

§  Any n quorums have non-empty intersection 
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“Weak Semi-Fast” Algorithm [GMS11] 

q  Write: Send v and gather candidate tags from a quorum 
§  Exists tag t in > (n/2)--wise intersection 

w YES – assign t to the written value and return – FAST: 2d 
w NO – propagate unique largest tag to a quorum – SLOW: 4d 

q  Read: Collect list of writes and tags from a quorum 
§  Exists max tag t in >(n/2)--wise intersection 

w YES – return the value written by that write – FAST: 2d 
w NO – propagate largest confirmed tag to a quorum – SLOW: 4d 

q  Simulations show that savings can be substantial 
§ Only 15% slow operations in some scenarios 
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What about Operations with 3 exchanges? 
[Hadjistasi, Nicolaou, S. -- NETYS’2017] 

q  Oh-RAM! “One and a half Round Atomic Memory” 
q  Protocol idea to obtain operations with latency 3d 

§  1st exchange: operation invoker contacts servers 
§  2nd exchange: servers gossip 
§  3rd exchange: servers respond to the invoker 

q  Impossibility of 3 exchange MWMR memory [TNS’17] 
§ No atomic implementations exist where all operations 

use 3 exchanges, even with a single server crash 
q  Our algorithms 

Model	 Read	Exch	 Write	Exch	 Read	Comm	 Write	Comm	

SWMR	 2	or	3	 2	 S2	+	3S	 2	S	

MWMR	 2	or	3	 4	 S2	+	3S	 4	S	
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Dynamic Atomic Memory 

q  Goal: Atomic Objects in Dynamic Settings 
q  �Dynamic� encompasses 

§ Changing sets of participants:  
nodes come and go as they please 

§ Wide range of failures 
§  Asynchrony, timing variations 
§ Crashes, message loss, weak delivery guarantees  
§ Changes in network topology 
§  Processor mobility 

q  Our solution: RAMBO 
§ Reconfigurable Atomic Memory for Basic Objects 

[Lynch Schwarzmann] 
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RAMBO: Approach 

q  Objects are replicated at several network locations 
q  To accommodate small, transient changes: 

§ Use quorum configurations:  members, quorums 
§ Maintains atomicity during �normal operation� 
§  Allows concurrency 

q  To handle larger, more permanent changes: 
§ Reconfigure: emit and use new configurations 
§ Use consensus to impose total order (Paxos) 
§ Maintains atomicity across configuration changes 
§  Any configuration can be installed at any time 
§ Reconfigure concurrently with reads/writes --  

operations do not depend on view change completion 
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Reconfigurable Atomic Memory for Basic Objects 
 

q  Global service specification 
q  Implementation:  

Main algorithm + �recon� service 
q  Recon service: 

§  “Advance reconnaissance”   
§ Consistent sequence of configurations 
§  Loosely coupled 

q  Main algorithm:   
§ Reading, writing 
§ Receives, disseminates new configuration  

information; no explicit installation 
§ Reconfigures: upgrade to new and remove old 
§ Reads/writes may use several configurations 

Net

RAMBO 

Recon 

RAMBO 
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Configurations and Reconfiguration 

q  Configuration: quorum system 
§ Collection of subsets of replica host ids 

where any two subsets intersect 
§  (Alternatively: read- and write-quorums, where any 

read-quorum intersects any write-quorum)  
q  Reconfiguration process involves two decoupled steps 

§ Recon: Emit a new configuration; then later… 
§ Garbage-collect obsolete configurations locally and 

“upgrade” to the latest known configuration 
§ No constraints on memberships of quorum systems 
 Q1 Q2 Q3 

… 
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Architectural View 

Communication Network 

Node i 

Joineri 

R/Wi 

Node j 

Recon

Joinerj 

R/Wj 

Application 

RAMBO
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High-Level Functions 

q  Joiner 
§  Introduces new participants to the system 

q  Reader-Writer 
§ Routine read and write operations 
§  Two-phase algorithm using all �known� configurations 
§ Using tags to time-stamp (and order) written values 

q  Recon 
§ Chooses new next configuration, e.g., using Paxos 
§  Informs the members of the current configuration 

q  Configuration upgrade (�packaged� with Reader-Writer) 
§  Identify and remove obsolete configurations 

(garbage collection) 
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Consensus 

Recon 

Net 

Implementation of Recon 

q  Uses consensus to determine  
new configurations 1,2,3,… 
§ Note: when the universe 

of configurations is 
finite and known, then  
consensus is not needed 
even with unbounded 
reconfiguration [GeoQuorums] 

q  Members of existing configuration(s)  
may propose a new configuration 

q  Proposals reconciled using consensus 
q  Consensus is a fairly heavy mechanism, but it is 

§ Used only for reconfigurations, which are infrequent 
§ Does not block or abort Read and Write operations 
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Configurations and Config Maps 

q  Configuration c 
§ members(c) -- set of members of configuration c 
§  read-quorums(c), write-quorums(c) -- sets of quorums 

q  Configuration map cm 
§ mapping from naturals to configurations 
§  cm(k) is configuration k 
§ Can be defined (c), undefined (⊥), garbage-collected (±) 

± ± c c c ⊥ c ⊥ ... ⊥ ... 

   GC�d         Defined           Mixed                        Undefined 

c 
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Configuration Map Changes (Local View) 

c0 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 

c0 c1 
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 

c0 c1 c2 
⊥ ⊥ ⊥ ck 

⊥ ⊥ ⊥ ⊥ 

± c1 c2 
⊥ ⊥ ⊥ ck 

⊥ ⊥ ⊥ ⊥ 

± ± c2 
⊥ ⊥ ⊥ ck 

⊥ ⊥ ⊥ ⊥ 

TIME 

. . . 

. . . 

. . . 

. . . 

. . . 

± ± ± c3 
⊥ ⊥ ck 

⊥ ⊥ ⊥ ⊥ . . . 

± ± ± ± ± c c c ⊥ c ⊥ . . . 

. . . 
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Configuration Upgrade [Gilbert, Lynch, S 10] 

q  Reconfigure to last configuration in a contiguous segment 
 

 
q  Phase 1:   

§  Informs write-quorum of cj … ck-1 about ck   
§ Collects (value,tag) from read-quorums of cj … ck-1  

q  Phase 2:   
§  Propagates latest (value, tag) to a write-quorum of ck 
§ Garbage-collect: Set cmap(j…k -1) to ± 

q  Constant-time upgrade regardless of the number of 
obsolete configurations (conditioned on failures) 

q  Maintains good read/write latency during system instability 
or frequent reconfigurations 

 
 
 
 

± cj . . . ck ⊥ . . . . . . . . . 
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On to Reads and Writes: Values and Tags 

q  Each value v  has an associated tag t  (logical timestamp) 
§  Tag is made up of the sequence-processor pair 

q  Reads: 
§  a set of value-tag pairs is obtained 
§  the result is the value with the maximum tag 

q  Writes: 
§  a set of value-tag pairs is obtained 
§  new-value is propagated with a new-tag that is a 

lexicographic increment of tag : 
 

        new-tag := 〈tag.seq + 1, pid 〉 
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Dynamic Reader-Writer and Recon 

q  The work is split between Reader-Writer and Recon 
q  Recon emits consistent configurations 
q  Reader-Writer processes run two-phase quorum-based 

algorithm, with all �active� configurations 
q  Background �gossip� builds fixed-points 
q  If Recon emits new configuration, Reader-Writer continues  

reads/writes in progress, until fixed-point is reached 

Net 

R/Wi Recon R/Wj 
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Processing Reads and Writes 

q  Reads and Writes perform Query and Propagation phases 
using known configurations, stored in op.cmap. 
§ Query: Gets latest value, tag, and cmap information from 

read-quorums 
§  Propagation: Gives latest (value,tag) to write-quorums 
§  Both phases:  Extend op.cmap with newly-discovered 

configurations that now must also be involved. 
q  Each phase ends with a fixed point, involving all the 

configurations currently in op.cmap 

Read or Write 

Propagation Phase Query Phase 
 

Start 
Query 

 
Start 
Prop 

 
End 

Query 

 
End 
Prop 
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Methodology 

q  Algorithms are presented formally,  
using interacting state machine  
models: Input/Output automata 
§  service specifications 
§  algorithm descriptions 
§ models for applications 

q  Safety: rigorous proof of correctness (atomicity) for 
arbitrary patterns of asynchrony and change 

q  Conditional performance analysis  
§  E.g., when message latency < d, quorum configurations 

are “viable”, then read and write operations take time 
between 4d and 8d, under reasonable “steady-state” 
assumptions. 

… 

Net

…
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Example Spec: Asynchronous Lossy Channel 

Input sendi,j(m) Output recvj,i(m) 

Internal lose(m) 

Channeli,j 

•  Input Output Automata  
[Lynch & Tuttle]


•  Supports: composition, 
abstraction, rigorous  
reasoning


•  100’s algorithms
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Details: Reader-Writer: Send and Recv Code 

Specification of  
gossip using 
Input/Output  
Automata of 
[Lynch Tuttle] 

Send 
 
 
 
 
                      Receive 
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Details: Reader-Writer Fixed Points 
 
Phase 1 fixed point 
 
             

Specification of  
fixed points using Input/
Output Automata 

Phase 2 fixed point 
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Some Latency Analysis Results 

q  Restrict attention to a subset of timed executions 
§ Reminder: Read and write operations are not affected 

by Recon delays or Recon non-termination 
q  Configuration upgrade (garbage collection) takes 4d 
q  If reconfigurations are �rare� -- operations take 4d 
q  If configurations are in �steady state� -- operations take 8d 
q  Logarithmic in number of configurations time �catch-up� 

after a burst of �bad timing behavior� 
§  A recovering node joins quickly after a long absence 
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Implementation 

q  Experimental system implementations [Musial 07] 
§  Platform for refinement, optimization, tuning 
§ Observe of algorithms in a local area setting 
§ Cluster with 16+/- Linux machines & fast switch 

q  Developed by manually translating the Input/Output 
Automata specification to Java code 
§  Precise rules are followed to mitigate error introduction 

during translation 

§ Rigorous proofs [Georgiou, Musial, S., Sonderegger 07, 11] 

q  Next steps:  
§  Specification in Tempo [Lynch Michel S 08] (Timed IOA) 
§ Code generation ([Georgiou Lynch Mavrommatis Tauber 09]) 
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Optimization and Development Methodology 

Atomicity 
properties 

Abstract 
Rambo 

Rambo 
with graceful 
departures 

Long-Lived 
Rambo 

Proof 

 Derivation Running 
System 

Simulation 

Simulation 
Manual derivation 

[Musial 07] 
or  

semi-automated 
code generation  

[Georgiou +  09,10] 

[Lynch, S 02] 
[Gilbert, L, S 10] 

[Georgiou, 
Musial,  

S 04, 06] 
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Optimization: Improving performance 

q  Long-Lived RAMBO: Graceful Leave + Incremental Gossip 
§ Rigorous proof of correctness by simulation 
§  Performance study 

 
 
 
 
 
 
 
 
 
 

§  [Georgiou, Musial, S. 06] 
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Complete Shared Memory 

q  Atomicity is compositional  
§  Implement a single memory location 
§ Get a complete shared memory by running several 

implementations: correct, but very slow! 
q  Domain-oriented reconfigurable atomic memory 

§ Optimizing performance for groups of related objects 

- Composition 

- Domain 

[Georgiou, Musial, S. 2009] 
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Federated Array of Bricks (FAB)  

q  Storage system developed and evaluated at HP Labs 
§  [Saito Frølund Veitch Merchant Spence 05] 

q  Distributes workload and handles failures and recoveries 
without disturbing client requests  

q  Read or write protocol involves majority quorums of 
storage “bricks” following the Rambo algorithm  

q  Evaluations of the implementation showed 
§  FAB performance is similar to centralized solutions, 
§ While offering at the same time continuous service and 

high availability 
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Additional Solutions 

q  Atila: Atomicity Through Indirect Learning Algorithm 
§  Indirect learning enables progress without routing or 

complete connectivity [Konwar, Musial, Nicolaou, S. 07] 

q  RDS [Chockler, Gilbert, Gramoli, Musial, S. 09]  
§ Reconfigurable Distributed Storage: Rambo ⊕ Paxos 
§  Integrate configuration upgrade with installation 
§ Obsolete configuration are removed quicker 

q  DynaStore: Reconfiguration without consensus 
[Aguilera, Keidar, Malkhi, Shraer 11] 
§  Initial quorum system, incremental adds/removes 
§ Changes yield DAGs of possibilities 
§ Reads/writes use ABD-like phases, traverse DAGs  
§  Termination: assumes finite reconfigurations 
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DynaDisk Implementation 

q  Data-center read/write storage system 
§  Allows add/remove of storage devices on-the-fly 
§  Based on DynaStore, but with and without consensus 
§  [Shraer Martin Malkhi Keidar 10] 
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GeoQuorums  

q  Dynamic atomic read/write memory for mobile settings 
§  [Dolev, Gilbert, Lynch, S., Welch 04, 05] 

§ Use Rambo architecture over Virtual Node layer  
q  Nodes: fixed geographical locations called Focal Points 

§ Centers of populated, compact geographical areas: 
w  Traffic intersections, buildings, bridges, points-of-interest 

§ Continuously populated, thus able to maintain state 
q  Implementations: 

§  Virtual Node layer over the physical mobile network 
§  Atomic read/write memory over the Virtual Node layer 
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GeoQuorums 

q  Mobile nodes 
q  Focal points – 

implemented as 
Virtual Nodes 

q  Quorums are defined 
over focal points 

q  Use GPS as timestamps 
q  Fast(er) read/write operations 

§  Single phase writes – two exchanges  
§ One or two phase reads – two or four exchanges 

q  Simplified, consensus-free, reconfiguration 
§  Two-phase algorithm using fixed configurations 
§ Can be motivated by performance: e.g., if writes are 

frequent, install smaller write quorums 
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Closing Remarks: Read-Modify-Write 

q  RMW is strictly stronger than atomic read/write object 
q  Some storage systems implement atomic RMW operations 

§  Expensive, and requires at its core atomic updates 
q  Examples 

§ Reduce parts of the system to a single-writer model 
w  e.g., Microsoft’s Azure 

§ Depend on clock synchronization hardware 
w Google’s Spanner 

§ Rely on complex mechanisms for resolving event 
ordering such as vector clocks 
w Amazon’s Dynamo 
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Thank You! 
 

Questions and Discussion 

? 


