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Three epochs of computing

• Sequential 

• Parallel 

• Distributed



In the 
beginning 
there was 
sequential

• modern computer science 
was born with the discovery 

of universal computing 
models 

•Especially the Turing machine 
• “anything” that can be 

computed, can be computed 
by a TM



Computable 
functions

• Notion of a computing 
device 

• and of a problem



Then there was 
parallel

• Model of choice– PRAM  
• Multiple processes execute  

steps synchronously 
• No process and no 

communication failures  
• In 2007 Kanbalam put UNAM 

at number 28 among 
universities, 1,368 processors 

at a cost of 3 million dollars 



Sequential vs. parallel 
computability

• No challenge to precise definition of “mechanical 
procedure”  

• Wikipedia: TM equivalent to multi-tape Turing machine, 
is usually interpreted as:  

• sequential computing and parallel computing differ in 
questions of efficiency, but not computability.  

• Notion of problem: function 



Distributed computing is 
everywhere!

• Nearly every activity in our society works as a 
distributed system made up of human and 
computer processes 

• From micro multi-core to wide area systems  

• “This revolution requires a fundamental change in 
how programs are written. Need new principles, 
algorithms, and tools” [Herlihy Shavit book]  

• Challenge to precise definition of “mechanical 
procedure”  

• and of function ?!



What is the distributed 
equivalent of a function?



A function! 
with a  ``little” change 

• Inputs and outputs are vectors 
•  The i-th component belongs to 

process i 
• Also, for each input vector, we allow 

one or more output vectors



A function! 
with a  ``little” change

Process Pi knows only its input 
or output

Set of Vectors Set of Vectors

Relation Delta



Tasks: Consensus
• Inputs vectors define initial values from some set V 

• Outputs vectors, where all entries are equal 

• Relation: If the input vector has a value v, then the 
output vector with all entries equal to v is OK 

• First task computability characterisation BMZ 90 ,  
J. Algorithms (1 crash failure, message passing)



Tasks are not functions 
with a  ``little” change !



Point of view- perspective

• Distributed 
computing is the 
science of 
perspectives



Multiperspectivism

• Each process has its own 
local view 

• Nobody can observe the 
global state



The science of perspectives

• We study how perspectives 
evolve with time  

• and how are distributed 
decision taken, based on 
individual perspectives



The science of perspectives

Under unreliable 
communication and 
failures!



– Processes may never be able to agree on a single 
perspective, or it would take too much time to agree 

  
— They need to collaborate while having different 

perspectives 

Distributed computing is different from 
sequential/parallel



Initial perspectives 
input complex

Georges La Tour  1620



Alice, Bob, and Cath have each drawn one card from a deck of three 
cards 0, 1, and 2. 

Each person can only see his own card  

Three players, 3 cards

Alice
Bob

Cath



Each initial configuration is a vector, 
specifying the card that each person got

Three players, 3 cards

201

Graph Representation 
• Called  Kripke structures in epistemic logic
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Three players, 3 cards

201

Alice has drawn card 0, Bob card 1, and Cath card 2
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Three players, 3 cards

201

Each edge labeled with the agent that does not distinguish  

the worlds at its end vertices
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•Alice, Bob, and Cath have each drawn one card from a deck of three 
cards 0, 1, and 2. 

Three players, 3 cards

201

Each edge labeled with the agent that does not distinguish  

the worlds at its end vertices

210

102 120

012 021
a

c

a

b
b

Alice  does not know which cards have 
each of the others



Representation by the dual of a graph, 
a complex

Three player, 3 cards

Each 2-simplex correspond to a possible world, 
its vertices are labeled with names and views 

A=white 

B= black 

C=grey

Alice has 0, Bob 
has 1, and Cath 
has 2.



Representation by a complex

Three player, 3 cards

Each 2-simplex correspond to a possible world, 
its vertices are labeled with names and views 

A=white 

B= black 

C=grey

Some vertices depicted as distinct are actually the same. Rook 
complex.

Alice does not know 
which cards have the 
others.



Perspectives Evolve  

with communication 

Werner,  
The Talmud Discussion



-- Alice now says “I do not have card 1”. 

Evolution of perspectives

A=white 

B= black 

C=grey

Removed



Evolution of perspectives

A=white 

B= black 

C=grey

Removed

Bob learned nothing, Cath knows the draw,  

-- Alice now says “I do not have card 1”. 

• Communication is by public announcements 



Which tasks 
can we solve 

under different 
perspectives? 



k-set agreement and consensus (k=1) 

• propose(x): each process has an input x, 
returns a value y  

1.  Agreement: at most k different values are 
returned 

2.   Validity: an output value y was proposed

Informal task specifications



• Validity(v): propose v, return w 

1. validity property:    w  is the value 
proposed by someone 

2. etc (in other problems)

Informal specifications



• Snapshot(v): propose v, return set View 

1. validity property:    w  is the value 
proposed by someone, w in View 

2. Views can be ordered by containment

Informal specifications



• Task : 
1. Input vectors (simplicial complex) 
2. Output vectors (simplicial complex) 
3. Input/output relation 

• Fundamental: for computability and 
complexity, topological approach

Formal: Tasks

Tasks tell what might happen in  
presence of concurrency



Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2
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*Some triangles are missing



Importance of Tasks
• Basic computability unit 

• Study of set agreement and 
renaming lead to a connection 
between distributed computing 
and topology 

• Characterisation of solvable tasks 
is many models 

• Orthogonal to TM computability, 
each process may be an infinite 
state machine!



But…



Distributed computer scientists 
excel at thinking concurrently,  
and building large distributed 

systems



Yet,  they evade 
thinking   about 

concurrent problem 
specifications. 

Weaver Ants Building Nest from Mango 
Leaves, Ubon Ratchathani, Thailand



It is infinitely easier and more intuitive 
for us humans to specify how  

abstract data structures behave in a 
sequential setting.

Nir Shavit, CACM 2011



object

A very different style of problem 
specification, from tasks

In practice often sequential specifications 
are used



An object- a queue
• Defined by a possible 

invocations and 
responses 

• The processes may 
invoke concurrently but 
specified in terms of a 
sequential specification, 
namely…



An object
• an automaton describing the outputs the object 

produces  when it is accessed sequentially.  

•  with a notion of state, and transitions of the 
form

�(q, in) = (q0, r)



Example: validity

• Invocations propose input 

•  responses return values that 
have been proposed

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2



Sequential specifications are convenient 

• Provide the notion of a state 

• Specification manual grows linearly with the 
number of operations



Is an implementation correct?

• An object specifies its behaviour in sequential 
executions, while executions may be 
concurrent



Is an implementation correct?

• An object specifies its behaviour in sequential 
executions, while executions may be concurrent



Is an implementation correct?

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

• A correctness implementation notion is needed 
for concurrent executions 



Linearizability
• Operations seem to occur at a point, in between invocation 

and response,  

• i.e., they can be transformed to a valid sequential execution.

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2



Importance of Linearizability

• . Good properties for the development of 
systems: 

Non-blocking: It never forces the system to 
block 

Locality: Linearizable implementations 
compose into a linearizable system.



Good pair!

Object: sequential specification 

Linearizability: implementation notion



Are all distributed problems 
sequentially specifiable?



Are all distributed problems 
sequentially specifiable?

No!



Validity task

• There is a simple implementation based on 
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1



Validity task

• There is a simple implementation based on 
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

not linearizable



Validity task

• There is a simple implementation based on 
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

A linearisable implementation would be 
stronger-

one process would always return its own 
input



Examples of non-sequentially specifiable:

1. Adopt-commit (used in Paxos for safety) 
2. Conflict-detection (Aspnes-Ellen) 
3. Safe-consensus (weaker validity of 

consensus) 
4. Write-snapshot and Immediate-snapshot 

(Asyn. Computability Theorem) 
5. k-set agreement (generalization of consensus) 
6. Exchanger (Java object)



If they are not objects, what are 
these “distributed problems” ?



Some are tasks

Tasks tell what might happen in  
presence of concurrency



Write-Snapshot Task
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But not all, a task cannot 
represent a queue



Interval-Sequential automata 
and 

interval-linearizability

Our proposal



Interval-Sequential automata

• Mealy state machine, based on sets of invocations/
responses  

• If in state q and it receives as input a set of 
invocations I, then 

• if (R,q′) ∈ δ(q,I), may return the non-empty set of 
responses R and move to state q′. 



Interval-Sequential Validity 
Object

validity(1)  ➞ 2

validity(2)  ➞ 3

validity(3)  ➞ 1

p

q

r

q0

q1

p.validity(1),q.validity(2)

p ➞
 2

q3

   
r.v

ali
dit

y(3
)

q ➞
 3,

r ➞
 1



Good pair: 

Interval automata and  

interval linearizability



From linearizability to Interval Linearizability

Sequential

Set sequential  
(Neiger 94)

[ ]
]

]
[

][ [
Interval sequential 

(DISC 15)



Interval Linearizability Properties
• Local property (like linearizability) 

• Non-blocking property (like linearizability)

An execution E is interval linearizable if    
and only if each object X, E|X is           

interval linearizable

For every interval linearizable execution E,  
there is an interval linearization with all          

ops in E completed 



Completness Result

A general definition: Prefix-closed set of executions 
(with no restrictions, not necessarily one-shot) 

Most general definition one can imagine?

For every prefix-closed set of executions, 
there is a IS object that model the set



Conclusion

• Set-based spec = multi-shot tasks = IS linearizability 

• In NETYS17 extend task definition further, to model multi-shot 
objects 

• To  apply topological techniques to objects 

• and object techniques to tasks, e.g. composability

Execution

Task
Interval-Sequential 

Object
Set-Sequential 

Object
Sequential 

Object ⇡⇢⇢

linearizable

set-linearizable
interval-linearizable

satisfies

one-shot



Thank you ! 


