
Distributed Computability and
distributed problems

Joint work with M. Herlihy and others, especially
Armando Castañeda and Michel Raynal DISC 2015

extensions in NETYS 2017

Sergio Rajsbaum
UNAM, Mexico

Three epochs of computing

• Sequential

• Parallel

• Distributed

In the
beginning
there was
sequential

• modern computer science
was born with the discovery

of universal computing
models

•Especially the Turing machine
• “anything” that can be

computed, can be computed
by a TM

Computable
functions

• Notion of a computing
device

• and of a problem

Then there was
parallel

• Model of choice– PRAM
• Multiple processes execute

steps synchronously
• No process and no

communication failures
• In 2007 Kanbalam put UNAM

at number 28 among
universities, 1,368 processors

at a cost of 3 million dollars

Sequential vs. parallel
computability

• No challenge to precise definition of “mechanical
procedure”

• Wikipedia: TM equivalent to multi-tape Turing machine,
is usually interpreted as:  

• sequential computing and parallel computing differ in
questions of efficiency, but not computability.  

• Notion of problem: function

Distributed computing is
everywhere!

• Nearly every activity in our society works as a
distributed system made up of human and
computer processes

• From micro multi-core to wide area systems  

• “This revolution requires a fundamental change in
how programs are written. Need new principles,
algorithms, and tools” [Herlihy Shavit book]  

• Challenge to precise definition of “mechanical
procedure”  

• and of function ?!

What is the distributed
equivalent of a function?

A function!
with a ``little” change

• Inputs and outputs are vectors
• The i-th component belongs to

process i
• Also, for each input vector, we allow

one or more output vectors

A function!
with a ``little” change

Process Pi knows only its input
or output

Set of Vectors Set of Vectors

Relation Delta

Tasks: Consensus
• Inputs vectors define initial values from some set V

• Outputs vectors, where all entries are equal

• Relation: If the input vector has a value v, then the
output vector with all entries equal to v is OK

• First task computability characterisation BMZ 90 ,
J. Algorithms (1 crash failure, message passing)

Tasks are not functions
with a ``little” change !

Point of view- perspective

• Distributed
computing is the
science of
perspectives

Multiperspectivism

• Each process has its own
local view

• Nobody can observe the
global state

The science of perspectives

• We study how perspectives
evolve with time

• and how are distributed
decision taken, based on
individual perspectives

The science of perspectives

Under unreliable
communication and
failures!

– Processes may never be able to agree on a single
perspective, or it would take too much time to agree

— They need to collaborate while having different

perspectives

Distributed computing is different from
sequential/parallel

Initial perspectives
input complex

Georges La Tour 1620

Alice, Bob, and Cath have each drawn one card from a deck of three
cards 0, 1, and 2.

Each person can only see his own card

Three players, 3 cards

Alice
Bob

Cath

Each initial configuration is a vector,
specifying the card that each person got

Three players, 3 cards

201

Graph Representation
• Called Kripke structures in epistemic logic

210

102 120

012 021
a

c

a

b
b

Three players, 3 cards

201

Alice has drawn card 0, Bob card 1, and Cath card 2

210

102 120

012 021
a

c

a

b
b

Three players, 3 cards

201

Each edge labeled with the agent that does not distinguish

the worlds at its end vertices

210

102 120

012 021
a

c

a

b
b

•Alice, Bob, and Cath have each drawn one card from a deck of three
cards 0, 1, and 2.

Three players, 3 cards

201

Each edge labeled with the agent that does not distinguish

the worlds at its end vertices

210

102 120

012 021
a

c

a

b
b

Alice does not know which cards have
each of the others

Representation by the dual of a graph,
a complex

Three player, 3 cards

Each 2-simplex correspond to a possible world,
its vertices are labeled with names and views

A=white

B= black

C=grey

Alice has 0, Bob
has 1, and Cath
has 2.

Representation by a complex

Three player, 3 cards

Each 2-simplex correspond to a possible world,
its vertices are labeled with names and views

A=white

B= black

C=grey

Some vertices depicted as distinct are actually the same. Rook
complex.

Alice does not know
which cards have the
others.

Perspectives Evolve

with communication

Werner,
The Talmud Discussion

-- Alice now says “I do not have card 1”.

Evolution of perspectives

A=white

B= black

C=grey

Removed

Evolution of perspectives

A=white

B= black

C=grey

Removed

Bob learned nothing, Cath knows the draw,

-- Alice now says “I do not have card 1”.

• Communication is by public announcements

Which tasks
can we solve

under different
perspectives?

k-set agreement and consensus (k=1)

• propose(x): each process has an input x,
returns a value y

1. Agreement: at most k different values are
returned

2. Validity: an output value y was proposed

Informal task specifications

• Validity(v): propose v, return w

1. validity property: w is the value
proposed by someone

2. etc (in other problems)

Informal specifications

• Snapshot(v): propose v, return set View

1. validity property: w is the value
proposed by someone, w in View

2. Views can be ordered by containment

Informal specifications

• Task :
1. Input vectors (simplicial complex)
2. Output vectors (simplicial complex)
3. Input/output relation

• Fundamental: for computability and
complexity, topological approach

Formal: Tasks

Tasks tell what might happen in
presence of concurrency

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

Importance of Tasks
• Basic computability unit

• Study of set agreement and
renaming lead to a connection
between distributed computing
and topology

• Characterisation of solvable tasks
is many models

• Orthogonal to TM computability,
each process may be an infinite
state machine!

But…

Distributed computer scientists
excel at thinking concurrently,
and building large distributed

systems

Yet, they evade
thinking about

concurrent problem
specifications.

Weaver Ants Building Nest from Mango
Leaves, Ubon Ratchathani, Thailand

It is infinitely easier and more intuitive
for us humans to specify how

abstract data structures behave in a
sequential setting.

Nir Shavit, CACM 2011

object

A very different style of problem
specification, from tasks

In practice often sequential specifications
are used

An object- a queue
• Defined by a possible

invocations and
responses

• The processes may
invoke concurrently but
specified in terms of a
sequential specification,
namely…

An object
• an automaton describing the outputs the object

produces when it is accessed sequentially.

• with a notion of state, and transitions of the
form

�(q, in) = (q0, r)

Example: validity

• Invocations propose input

• responses return values that
have been proposed

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

Sequential specifications are convenient

• Provide the notion of a state

• Specification manual grows linearly with the
number of operations

Is an implementation correct?

• An object specifies its behaviour in sequential
executions, while executions may be
concurrent

Is an implementation correct?

• An object specifies its behaviour in sequential
executions, while executions may be concurrent

Is an implementation correct?

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

• A correctness implementation notion is needed
for concurrent executions

Linearizability
• Operations seem to occur at a point, in between invocation

and response,

• i.e., they can be transformed to a valid sequential execution.

q0

q1

q2

p

q

r

validity(1) ! 2

validity(2) ! 2

validity(3) ! 1

q validity(2) resp(2)

p validity(1) resp(2)

r validity(3) resp(1)

q2

Importance of Linearizability

• . Good properties for the development of
systems:

Non-blocking: It never forces the system to
block

Locality: Linearizable implementations
compose into a linearizable system.

Good pair!

Object: sequential specification

Linearizability: implementation notion

Are all distributed problems
sequentially specifiable?

Are all distributed problems
sequentially specifiable?

No!

Validity task

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

Validity task

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

not linearizable

Validity task

• There is a simple implementation based on
read/write primitives

p

q

r

validity(1) ! 2

validity(2) ! 3

validity(3) ! 1

A linearisable implementation would be
stronger-

one process would always return its own
input

Examples of non-sequentially specifiable:

1. Adopt-commit (used in Paxos for safety)
2. Conflict-detection (Aspnes-Ellen)
3. Safe-consensus (weaker validity of

consensus)
4. Write-snapshot and Immediate-snapshot

(Asyn. Computability Theorem)
5. k-set agreement (generalization of consensus)
6. Exchanger (Java object)

If they are not objects, what are
these “distributed problems” ?

Some are tasks

Tasks tell what might happen in
presence of concurrency

Write-Snapshot Task
p1

p2 p3

p1

p1 p1

p2

p2

p2

p3

p3

p3

1

32

13

13

12

12

23 23

123 123

123

p1

p2 p3

*Some triangles are missing

But not all, a task cannot
represent a queue

Interval-Sequential automata
and

interval-linearizability

Our proposal

Interval-Sequential automata

• Mealy state machine, based on sets of invocations/
responses

• If in state q and it receives as input a set of
invocations I, then

• if (R,q′) ∈ δ(q,I), may return the non-empty set of
responses R and move to state q′.

Interval-Sequential Validity
Object

validity(1) ➞ 2

validity(2) ➞ 3

validity(3) ➞ 1

p

q

r

q0

q1

p.validity(1),q.validity(2)

p ➞
 2

q3

r.v

ali
dit

y(3
)

q ➞
 3,

r ➞
 1

Good pair:

Interval automata and

interval linearizability

From linearizability to Interval Linearizability

Sequential

Set sequential
(Neiger 94)

[]
]

]
[

][[
Interval sequential

(DISC 15)

Interval Linearizability Properties
• Local property (like linearizability)

• Non-blocking property (like linearizability)

An execution E is interval linearizable if
and only if each object X, E|X is

interval linearizable

For every interval linearizable execution E,
there is an interval linearization with all

ops in E completed

Completness Result

A general definition: Prefix-closed set of executions
(with no restrictions, not necessarily one-shot)

Most general definition one can imagine?

For every prefix-closed set of executions,
there is a IS object that model the set

Conclusion

• Set-based spec = multi-shot tasks = IS linearizability

• In NETYS17 extend task definition further, to model multi-shot
objects

• To apply topological techniques to objects

• and object techniques to tasks, e.g. composability

Execution

Task
Interval-Sequential

Object
Set-Sequential

Object
Sequential

Object ⇡⇢⇢

linearizable

set-linearizable
interval-linearizable

satisfies

one-shot

Thank you !

