Another Look at the Implementation of
Read/write Registers in Crash-prone
Asynchronous Message-Passing Systems

D. ImMBs! A. MOSTEFAOUI? M. PERRIN? M. RAYNALS

l1LIF, Université d’Aix-Marseille, France
2LINA, Université de Nantes, France
SIUF & IRISA, Université de Rennes, France &
Dpt of Comp., Polytechnic University, Hong Kong

P
— IRISA

THE communication abstraction for read/write registers

Table of contents

e Fundamental issues in distributed computing
e Atomic read/write register

e [he SCD communication abstraction

e SCD-broadcast captures RW registers (Snapshot, ...

e Conclusion

P
— IRISA

THE communication abstraction for read/write registers

A glance at

Read/Write Registers

P
— IRISA

THE communication abstraction for read/write registers

FUNDAMENTAL pbs of DC

e Communication

* Reliable broadcast
x Read/Write register

e Agreement

In the presence of adversaries
such as Asynchrony, failures, mobility, etc.

P
— IRISA

THE communication abstraction for read/write registers

What is a register?

e Something that can be

x written (posted/marked) and
x read (understood)

e Historical perspective:

x One of the most ancient (3500 BC) ways to record
history/information: Sumerian clay tablets

x More recently (1936): Turing machine tape: the fun-
damental object of computing

P
— IRISA

THE communication abstraction for read/write registers

On the many faces of registers

e Capacity: binary, bounded, unbounded
e Access: SWSR, SWMR, MRMR

e F[acing concurrency

* Safe register
* Regular register
* Atomic register

e From safe binary SWSR registers to atomic multival-
ued MWMR registers despite asynchrony and process

crashes (Lamport 1986)

e In sequential computing:
registers are universal objects (Turing, 1936)

P
— IRISA

THE communication abstraction for read/write registers

Atomic read/write register

e Read and write operations appear as
*x If they have been executed sequentially,
* and this sequence

x complies with real-time order
= respects process order
x satisfies the seq spec of a register

e Non-deterministic behavior when concurrency

e \Why atomicity is fundamental:

Atomic objects compose for freel

P
— IRISA

THE communication abstraction for read/write registers

Sequentially consistent read/write register

e Read and write operations appear as
x if they have been executed sequentially,
* and this sequence

* NOt required to comply with real-time order
but respects process order
x satisfies the seq spec of a register

e Non-deterministic behavior when concurrency

e Sequentially consistent objects do not compose for freel

P
— IRISA

THE communication abstraction for read/write registers

Atomic rea

d/write register: Example

R.read() — 1 R.read() — 2
Pi = =>r ~ =7
\ I \ /
\ I \ //
I \
R.write(1) \ ! R.write(?2) \ '
\ /
D = = \ : < B »
\ / \ | \) /
\ | \ \ /
‘\ /I \ ! A I’ \ /
\ \ /
L Vo '\ Ruwrite(3), / Ruread() — 2
Pk) L \‘ 'l) | - =,
! v ! P / AN /
\ Vo \ \\ I e \ // N /
‘ / ‘\: \ N /,’/ \ / N !
\/ RN w1, \% Omniscient observer’s time line
¢ ¥ _
Here R=1 Here R=3 Here R =2
- — e —— = - —
—
IRISA THE communication abstraction for read/write registers 9

P

Sequentially consistent read/write register: Example

Di

R.read() — 1
= =
p; Rowrite(1) R.write(2) -~
_|<)/s =(\ > - =T _ - =
1 / \ // II ////
1 / \// I’/
‘ / /\\ ///I
|| / /// \ /// !
ll /// /// ,/’//V\\ ’I
Vo A N ! . . .
¥ @:/ WI Logical time line
=
Here R =1 Here R =2
e — —— —
—
= |RISA

THE communication abstraction for read/write registers 10

Process and basic communication model

e Process model:

* n sequential processes pq, ..., pn
* asynchrony: unknown arbitrary speed

e Communication model:

* complete point-to-point network
x no bound on transfer delays (but finite)
x reliable (no loss, creation, duplication, alteration)

* point-to-point = sender can be identified
* channels: not required to be FIFO

P
— IRISA

THE communication abstraction for read/write registers

Communication operations

e operations “send tag (m) to p;” and "“receive ()"

e the macro-operation “broadcast tag (m)"”: shortcut for
for each j € {1,...,n} send m to p; end for

P
— IRISA

THE communication abstraction for read/write registers 12

Process failure model

e Crash failure = unexpected halt

x A process executes correctly until it (possibly) crashes
* NO recovery

e Model parameters n and ¢

*x |t| = upper bound on the nb of faulty processes

* Upper bound on t: [t < n/2
(Attiya, Bar Noy, Dolev 1995)

x Notation: CAMP,,+[0] and CAMP,, [t < n/2]

e Broadcast is not reliable

P
— IRISA

THE communication abstraction for read/write registers 13

Implementing a register REG in a MP system

local

i |memory

.~ o,

Q Q application processes

. | local | i i | local |
i |memory| ; i |memory| ;

distributed shared memory

] g abstraction

...

Peer-to-peer system model
Each p; is both a client and a server

P
— IRISA

THE communication abstraction for read/write registers 14

Classical implementations
of an atomic register

IN Ccrash-prone asynchronous
message-passing systems

P
— IRISA

THE communication abstraction for read/write registers

15

ABD95 algorithm: Dijkstra Prize 2011

- Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing
systems. Journal of the ACM, 42(1):121-132 (1995)

e Impossibility to know if a process has crashed or is only
very slow

e The problem can be solved iff ¢t < n/2: proof based on
indistinguishability argument

e Typical algorithm:

* Sequence numbers
* Notion of intersecting quorums

* Notion of requests and acknowledgments
— Write copies of a majority of processes
— Read copies from a majority of processes

P
— IRISA

THE communication abstraction for read/write registers 16

A few other algorithims

Attiya H., Efficient and robust sharing of memory in message-passing systems.
Journal of Algorithms, 34:109-127 (2000)

Delporte-Gallet C., Fauconnier H., Rajsbaum S., and Raynal M., Implementing
snapshot objects on top of crash-prone asynchronous message-passing systems.
Proc. 16th Int’'l Conference on Algorithms and Architectures for Parallel Pro-

cessing (ICA3PP’16), Springer LNCS 10048, pp. 341-355 (2016)

Hadjistasi Th., Nicolaou N., and Schwarzmann A.A., Oh-RAM! One and a half
round read/write atomic memory. Brief announcement. Proc. 35th ACM
Symposium on Principles of Distributed Computing (PODC’16), ACM Press,
pp. 353-355 (2016)

Mostéfaoui A. and Raynal M., Two-bit messages are sufficient to implement
atomic read/write registers in crash-prone systems. Proc. 35th ACM Sympo-
sium on Principles of Distributed Computing (PODC’16), ACM Press, pp. 381-
390 (2016)

Raynal M., Distributed algorithms for message-passing systems. Springer, 510
pages, ISBN 978-3-642-38122-5 (2013)

Ruppert E., Implementing shared registers in asynchronous message-passing sys-
tems. Springer Encyclopedia of Algorithms, pp. 400-403 (2008)

P
— IRISA

THE communication abstraction for read/write registers 17

Aim of the paper

P
— IRISA

THE communication abstraction for read/write registers

ODbjects to be built

e basic model CARW,, [0]: Atomic read/write registers

e Snapshot objects (can be built in CARW,, +[0])

x array REG[1..m] of atomic read/write registers with
two operations, write() and snapshot()

* MWMR snapshot

* write(r,v) assigns v to REG|r]
* snapshot() returns the value of the full array as if
the operation had been executed instantaneously

* SWMR snapshot:

* m =mn and_
x r = for write(r,v) by p;

- IRISA
I THE communication abstraction for read/write registers 19

Answer the question

Which is
the communication abstraction
that matches
RW reqgisters and snapshot objects?
and also help solve other problems...

P
— IRISA

THE communication abstraction for read/write registers

20

More precisely

Concurrent object

Communication abstraction

Causal read/write registers

Causal msg delivery

Cconsensus

Total order broadcast

Snapshot object (R/W reg.)

SCD-broadcast

P
— IRISA

THE communication abstraction for read/write registers 21

The SCD-Broadcast abstraction: definition (1)

SCD = Set-Constrained Delivery

e [WO operations:

x scd_broadcast(m): broadcasts a message m
% scd_deliver(): returns a non-{) set of messages

e Five properties:

* Validity:
If a process scd-delivers a set containing a message
m, then m was scd-broadcast by some process

* Integrity:
A msg Is scd-delivered at most once by each process

P
— IRISA

THE communication abstraction for read/write registers 22

The SCD-Broadcast abstraction: definition (2)

o MS-Ordering:
A process p; scd-delivers a message set ms; containing
a message m and later a message set ms; containing a

message m/

No process scd-delivers first a message set mS;- contain-

ing m/ and later a message ms; containing m

e Jermination-1:

If a non-faulty process scd-broadcasts a message m, it

terminates its scd-broadcast invocation and scd-delivers
a message set containing m

e Jermination-2:

If a process scd-delivers a message m, every non-faulty
process scd-delivers a message set containing m

- IRISA
I THE communication abstraction for read/write registers 23

The SCD-Broadcast abstraction: PROPERTIES (1)

If each message set contains a single message

e Validity + Integrity + Termination-1 + Termination-2

— Uniform Reliable Broadcast

P
— IRISA

THE communication abstraction for read/write registers 24

The SCD-Broadcast abstraction: PROPERTIES (2)

A containment property

e let mst = /-th message set scd-delivered by p,

1

e at some time: p; scd-delivered the sequence of message
sets ms;,

o let MSffzms,}U---Umsf-’:

o let Mngms,}U---Umsy

..’mS.

T
(/

(]

J

o Vi, j,x,y: (MSTC MSY)v (MS?C MST)

P
P

IRISA

THE communication abstraction for read/write registers

25

The SCD-Broadcast abstraction: PROPERTIES (3)

Graph interpretation

e Local scd-delivery order: m ~—; m/

* p; scd-delivers a set containing m
* before a set containing m/

e Global scd-delivery order: — = Uj<;<p

— is partial order (no cycle)
(useful to understand and proofs)

P
— IRISA

THE communication abstraction for read/write registers

26

From SCD-Broadcast
to MWMR Snapshot

Building a snapshot object
in CAMP,, +[SCD-broadcast]

P
— IRISA

THE communication abstraction for read/write registers

27

Local representation of the snapshot object REG

e reg;[1..m]: current value of REG[1..m], as known by p;
e done;. Boolean variable

e tsa;[1..m]: array of timestamps associated with the val-
ues stored in reg;[1..m]

x tsa;[7].date and tsa;[j].proc (timestamp of reg;[7])
e Lexicographical total order <is:
x ts1 = (h1,i1) and ts2 = (h2,i2)

d
x tsl <45 ts2 ief (hl < h2) V ((hl = h2) A (i1 < 12))

P
— IRISA

THE communication abstraction for read/write registers 28

Algorithm: snapshot operation

operation snapshot() by p, is
done; < false;
scd_broadcast SYNC (7);
wait(done;); % end of synchronization
return(reg;[1..m]).

e SYNC (7) synchronization message

e allows p; to obtain an atomic value of REG[1..m]

P
— IRISA

THE communication abstraction for read/write registers

29

Algorithm: write operation

operation write(r,v) by p; is
done; < false;
scd_broadcast SYNC (7);
wait(done;); % end of synchronization 1
done; < false;
scd_broadcast WRITE (r, v, (tsa;[r].date + 1,1));
wait(done;). % end of synchronization 2

P
P

IRISA THE communication abstraction for read/write registers

30

Algorithm: snapshot operation

when the message set
{WRITE(rjl, Vi, (datejl,j1>), e WRITE(rjx, Vi (datejx,j;,;>),
SYNC(jza1), -++» SYNC(jy) } is scd-delivered do

for each r such that WRITE(r, —, —) € the message set do
let (date, writer) = greatest timestamp in WRITE(r, —, —);
If (tsa;[r] <¢s {(date,writer))

then let v the value in WRITE(r, —, (date, writer));
reg;|r] < v; tsa;[r] < {(date,writer)

end if

end for;

iIf 3 7: 5, =1 then done; < true end if.

Observation: no quorum at this abstraction levell

P
— IRISA

THE communication abstraction for read/write registers 31

The case of a sequentially consistent snapshot object

Suppress the messages SYNC!

T hese messages ensure compliance wrt real-time

operation snapshot() by p; is
return(reg;[1..m]).

operation write(r,v) by p, is
done; < false;
scd_broadcast WRITE (r, v, (tsa;[r].date + 1,1));
wait(done;).

when the message set
{WRITE(r},,v,, (date;,,j1)), ---, WRITE(r;,,v;,, (date;,, jz))}
IS scd-delivered do

- IRISA
I THE communication abstraction for read/write registers 32

From MWMR Snapshot
to SCD-Broadcast

Building SCD-Broadcast
in CARW,, +[Snapshot] (CARW,, +[0])

P
— IRISA

THE communication abstraction for read/write registers

33

Shared objects

€. empty seguence
@: concatenation

e SENT[1..n]: snapshot object, initialized to [0,---, 0]
SENT[i] = messages scd-broadcast by p;

e SETS SEQ[1..n]: snapshot object, initialized to [e, - - -, €]
SETS _SEQ[i] = seq. of msg sets scd-delivered by p;

P
— IRISA

THE communication abstraction for read/write registers 34

Local objects

e sent;. local copy of the snapshot object SENT
e sets seq;: local copy of the snapshot object SETS SEQ).

e to_deliver;: set whose aim is to contain the next message
set that p; has to scd-deliver

e members(set_seq) returns the set of messages in set_seq

P
— IRISA

THE communication abstraction for read/write registers 35

Algorithm (1)

operation scd broadcast(m) by p; Is
sent;[i] < sent;[i]] U {m}; SENT .write(sent;[i]); progress().

background task T is
repeat forever progress() end repeat.

P
— IRISA

THE communication abstraction for read/write registers

36

Algorithm (2)

procedure progress() by p; is

enter_mutex();

catch_up();

sent; < SENT .snapshot();

to_deliver; < (U1<;j<n sent;[j]) \ members(sets_seq;[i]);

If (to_deliver; &= ()

then sets seq;[i] < sets seq;[i] @ to_deliver;;

SETS SEQ.write(i, sets_seq;[i]);
scd_deliver(to_deliver;)

end if;

exit_mutex().

P
— IRISA

THE communication abstraction for read/write registers

37

Algorithm (3)

procedure catch_up() by p; is
sets _seq; < SETS SEQ).snapshot();
while
(34, set : set first set in sets seq;[j] N set € members(sets seq;[i])
do to_deliver; < set \ members(sets seq;[i]);
sets seq;[i] < sets_seq;[i] D to_deliver;;
SETS SEQ.write(i, sets_seq;[i]);
scd_deliver(to_deliver;)
end while.

P
— IRISA

THE communication abstraction for read/write registers 38

From sequentially consistency to atomicity

From non-composable to composable snapshot objects
The power of the messages SYNC() (real-time compliance)

e Start from a sequentially consistent snapshot object
(CARW,, ¢[Snapshot])

e Build SCD-Broadcast on top of it
we obtain CAMP,, [SCD-broadcast]

e Build atomic snapshot on top of CAMP,, ;[SCD-broadcast]

First (?) systematic construction from SC to Atomicity

P
— IRISA

THE communication abstraction for read/write registers 39

On the implementation
of SCD-Broadcast

P
— IRISA

THE communication abstraction for read/write registers

40

Implementing SCD in CAMP{t <n/2}

operation scd_broadcast(m) is
forward(m, 7, sn;, 1, sn;);
wait(# msg € buffer; : msg.sd =1).

when the message forward(m, sd, sn, f, sny) is fifo-delivered do % from py
forward(m, sd, sngq, f, sny);
try_deliver().

procedure forward(m, sd, sng, f, sng) IS
If (sng > clock;[sd])
then if (3 msg € buffer; : msg.sd = sd AN msg.sn = snyy)
then msg.cl[f] < sny

else

end if

end if.

threshold[1l..n] < [oo,...,0o0]; threshold[f] < sns;
let msg < (m, sd, sny, threshold[1..n]);

buffer; < buffer; U {msg};

fifo_broadcast forward(m, sd, sny, i, sn;);

sn; <+ sn; + 1

P

IRISA

THE communication abstraction for read/write registers

41

Implementing SCD in CAMP{t <n/2} (Cont’d)

procedure try_deliver() is
let to_deliver; < {msg € buffer; : |[{f : msg.cl[f] < co}| > 5};
while (3msg € to_deliver;, msg’ € buffer; \ to_deliver; : |{f : msg.cl[f] < msg'.cl[f]}| <5) do
to_deliver; <— to_deliver; \ {msg}
end while;
if (to_deliver; = ()
then for each (msg € to_deliver; such that clock;[msg.sd] < msg.sn)
do clock;[msg.sd] < msg.sn end for;
buffer; < buffer; \ to_deliver;;
ms < {m : 3 msg € to_deliver; : msg.m = m}, scd_deliver(ms)
end if.

e Ast < n/2is necessary and sufficient to build read/write
registers in CAMP,, +[0], it is also necessary ans sufficient
to build SCD-broadcast in CAMP,, +[0]

e All the “technical details’” are hidden in this algorithm
which is designed and proved once for all!

- IRISA
I THE communication abstraction for read/write registers 42

Cost of SCD-broadcast implementation

e Assumption:

* Let A = message delay
*x Local computation: zero cost

e Cost:

*x Time: 2A

x Messages: n?

P
— IRISA

THE communication abstraction for read/write registers

43

Conclusion

P

IRISA

THE communication abstraction for read/write registers

44

TO summarize

—_—

read/write or snapshot
shared memory

Seq consistent or atomic

\

—__

SCD-Broadcast

/

Other applications:

lattice agreement, commutative operations, ...

P
— IRISA

THE communication abstraction for read/write registers

45

Conceptual issues

e Better understanding of basic mechanisms needed to
implement a read/write shared memory

e SCD-broadcast captures the ‘“right” abstraction level
e Simplicity of the proposed (register/snapshot) algo.
e Genericity of the proposed algorithms wrt

x read/write vs snapshot objects (same algorithms)
x atomicity vs sequential consistency (SYNC msgs)

P
— IRISA

THE communication abstraction for read/write registers 46

More important: He Told me

“Algorithms are at the core of Informatics”

P
— IRISA

THE communication abstraction for read/write registers

