
Another Look at the Implementation of

Read/write Registers in Crash-prone

Asynchronous Message-Passing Systems

D. IMBS1 A. MOSTEFAOUI2 M. PERRIN2 M. RAYNAL3

1LIF, Université d’Aix-Marseille, France

2LINA, Université de Nantes, France

3IUF & IRISA, Université de Rennes, France &

Dpt of Comp., Polytechnic University, Hong Kong

THE communication abstraction for read/write registers 1

Table of contents

• Fundamental issues in distributed computing

• Atomic read/write register

• The SCD communication abstraction

• SCD-broadcast captures RW registers (Snapshot, ...)

• Conclusion

THE communication abstraction for read/write registers 2

A glance at

Read/Write Registers

THE communication abstraction for read/write registers 3

FUNDAMENTAL pbs of DC

• Communication

⋆ Reliable broadcast

⋆ Read/Write register

• Agreement

In the presence of adversaries
such as Asynchrony, failures, mobility, etc.

THE communication abstraction for read/write registers 4

What is a register?

• Something that can be

⋆ written (posted/marked) and

⋆ read (understood)

• Historical perspective:

⋆ One of the most ancient (3500 BC) ways to record
history/information: Sumerian clay tablets

⋆ More recently (1936): Turing machine tape: the fun-
damental object of computing

THE communication abstraction for read/write registers 5

On the many faces of registers

• Capacity: binary, bounded, unbounded

• Access: SWSR, SWMR, MRMR

• Facing concurrency

⋆ Safe register

⋆ Regular register

⋆ Atomic register

• From safe binary SWSR registers to atomic multival-
ued MWMR registers despite asynchrony and process
crashes (Lamport 1986)

• In sequential computing:
registers are universal objects (Turing, 1936)

THE communication abstraction for read/write registers 6

Atomic read/write register

• Read and write operations appear as

⋆ if they have been executed sequentially,

⋆ and this sequence

∗ complies with real-time order
⇒ respects process order

∗ satisfies the seq spec of a register

• Non-deterministic behavior when concurrency

• Why atomicity is fundamental:

Atomic objects compose for free!

THE communication abstraction for read/write registers 7

Sequentially consistent read/write register

• Read and write operations appear as

⋆ if they have been executed sequentially,

⋆ and this sequence

∗ not required to comply with real-time order
but respects process order

∗ satisfies the seq spec of a register

• Non-deterministic behavior when concurrency

• Sequentially consistent objects do not compose for free!

THE communication abstraction for read/write registers 8

Atomic read/write register: Example

pi

pj

pk

Here R = 1 Here R = 2Here R = 3

R.write(1) R.write(2)

R.write(3) R.read()→ 2

R.read()→ 2R.read()→ 1

Omniscient observer’s time line

THE communication abstraction for read/write registers 9

Sequentially consistent read/write register: Example

pi

pj

Here R = 2Here R = 1

R.read()→ 1

R.write(1) R.write(2)

Logical time line

THE communication abstraction for read/write registers 10

Process and basic communication model

• Process model:

⋆ n sequential processes p1, ..., pn

⋆ asynchrony: unknown arbitrary speed

• Communication model:

⋆ complete point-to-point network

⋆ no bound on transfer delays (but finite)

⋆ reliable (no loss, creation, duplication, alteration)

⋆ point-to-point ⇒ sender can be identified

⋆ channels: not required to be FIFO

THE communication abstraction for read/write registers 11

Communication operations

• operations “send tag (m) to pj” and “receive ()”

• the macro-operation “broadcast tag (m)”: shortcut for

for each j ∈ {1, . . . , n} send m to pj end for

THE communication abstraction for read/write registers 12

Process failure model

• Crash failure = unexpected halt

⋆ A process executes correctly until it (possibly) crashes

⋆ No recovery

• Model parameters n and t

⋆ t = upper bound on the nb of faulty processes

⋆ Upper bound on t: t < n/2

(Attiya, Bar Noy, Dolev 1995)

⋆ Notation: CAMPn,t[∅] and CAMPn,t[t < n/2]

• Broadcast is not reliable

THE communication abstraction for read/write registers 13

Implementing a register REG in a MP system

application processes

local
memory

local
memory

distributed shared memory

abstraction

local

p1 pi pn

memory

underlying network

Peer-to-peer system model

Each pi is both a client and a server

THE communication abstraction for read/write registers 14

Classical implementations

of an atomic register

in crash-prone asynchronous

message-passing systems

THE communication abstraction for read/write registers 15

ABD95 algorithm: Dijkstra Prize 2011

- Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing
systems. Journal of the ACM, 42(1):121-132 (1995)

• Impossibility to know if a process has crashed or is only
very slow

• The problem can be solved iff t < n/2: proof based on
indistinguishability argument

• Typical algorithm:

⋆ Sequence numbers

⋆ Notion of intersecting quorums

⋆ Notion of requests and acknowledgments
– Write copies of a majority of processes
– Read copies from a majority of processes

THE communication abstraction for read/write registers 16

A few other algorithms

• Attiya H., Efficient and robust sharing of memory in message-passing systems.
Journal of Algorithms, 34:109-127 (2000)

• Delporte-Gallet C., Fauconnier H., Rajsbaum S., and Raynal M., Implementing
snapshot objects on top of crash-prone asynchronous message-passing systems.
Proc. 16th Int’l Conference on Algorithms and Architectures for Parallel Pro-
cessing (ICA3PP’16), Springer LNCS 10048, pp. 341–355 (2016)

• Hadjistasi Th., Nicolaou N., and Schwarzmann A.A., Oh-RAM! One and a half
round read/write atomic memory. Brief announcement. Proc. 35th ACM
Symposium on Principles of Distributed Computing (PODC’16), ACM Press,
pp. 353-355 (2016)

• Mostéfaoui A. and Raynal M., Two-bit messages are sufficient to implement
atomic read/write registers in crash-prone systems. Proc. 35th ACM Sympo-
sium on Principles of Distributed Computing (PODC’16), ACM Press, pp. 381-
390 (2016)

• Raynal M., Distributed algorithms for message-passing systems. Springer, 510
pages, ISBN 978-3-642-38122-5 (2013)

• Ruppert E., Implementing shared registers in asynchronous message-passing sys-
tems. Springer Encyclopedia of Algorithms, pp. 400-403 (2008)

THE communication abstraction for read/write registers 17

Aim of the paper

THE communication abstraction for read/write registers 18

Objects to be built

• basic model CARWn,t[∅]: Atomic read/write registers

• Snapshot objects (can be built in CARWn,t[∅])

⋆ array REG[1..m] of atomic read/write registers with
two operations, write() and snapshot()

⋆ MWMR snapshot

∗ write(r, v) assigns v to REG[r]
∗ snapshot() returns the value of the full array as if
the operation had been executed instantaneously

⋆ SWMR snapshot:

∗ m = n and
∗ r = i for write(r, v) by pi

THE communication abstraction for read/write registers 19

Answer the question

Which is

the communication abstraction

that matches

RW registers and snapshot objects?

and also help solve other problems...

THE communication abstraction for read/write registers 20

More precisely

Concurrent object Communication abstraction

Causal read/write registers Causal msg delivery

Consensus Total order broadcast

Snapshot object (R/W reg.) SCD-broadcast

THE communication abstraction for read/write registers 21

The SCD-Broadcast abstraction: definition (1)

SCD = Set-Constrained Delivery

• Two operations:

⋆ scd broadcast(m): broadcasts a message m

⋆ scd deliver(): returns a non-∅ set of messages

• Five properties:

⋆ Validity:
If a process scd-delivers a set containing a message
m, then m was scd-broadcast by some process

⋆ Integrity:
A msg is scd-delivered at most once by each process

THE communication abstraction for read/write registers 22

The SCD-Broadcast abstraction: definition (2)

• MS-Ordering:
A process pi scd-delivers a message set msi containing
a message m and later a message set ms′i containing a
message m′

⇒
no process scd-delivers first a message set ms′j contain-

ing m′ and later a message msj containing m

• Termination-1:
If a non-faulty process scd-broadcasts a message m, it
terminates its scd-broadcast invocation and scd-delivers
a message set containing m

• Termination-2:
If a process scd-delivers a message m, every non-faulty
process scd-delivers a message set containing m

THE communication abstraction for read/write registers 23

The SCD-Broadcast abstraction: PROPERTIES (1)

If each message set contains a single message

• Validity + Integrity + Termination-1 + Termination-2

= Uniform Reliable Broadcast

THE communication abstraction for read/write registers 24

The SCD-Broadcast abstraction: PROPERTIES (2)

A containment property

• let msℓi = ℓ-th message set scd-delivered by pi

• at some time: pi scd-delivered the sequence of message
sets ms1i , · · · ,msxi

• let MSx
i = ms1i ∪ · · · ∪msxi

• let MS
y
j = ms1i ∪ · · · ∪ms

y
j

• ∀ i, j, x, y: (MSx
i ⊆ MS

y
j) ∨ (MS

y
j ⊆ MSx

i)

THE communication abstraction for read/write registers 25

The SCD-Broadcast abstraction: PROPERTIES (3)

Graph interpretation

• Local scd-delivery order: m 7→i m
′

⋆ pi scd-delivers a set containing m

⋆ before a set containing m′

• Global scd-delivery order: 7→ = ∪1≤i≤n 7→i

7→ is partial order (no cycle)
(useful to understand and proofs)

THE communication abstraction for read/write registers 26

From SCD-Broadcast

to MWMR Snapshot

Building a snapshot object

in CAMPn,t[SCD-broadcast]

THE communication abstraction for read/write registers 27

Local representation of the snapshot object REG

• regi[1..m]: current value of REG[1..m], as known by pi

• donei: Boolean variable

• tsai[1..m]: array of timestamps associated with the val-
ues stored in regi[1..m]

⋆ tsai[j].date and tsai[j].proc (timestamp of regi[j])

• Lexicographical total order <ts:

⋆ ts1 = 〈h1, i1〉 and ts2 = 〈h2, i2〉

⋆ ts1 <ts ts2
def
= (h1 < h2) ∨ ((h1 = h2) ∧ (i1 < i2))

THE communication abstraction for read/write registers 28

Algorithm: snapshot operation

operation snapshot() by pi is
donei ← false;
scd broadcast SYNC (i);
wait(donei); % end of synchronization
return(reg i[1..m]).

• SYNC (i) synchronization message

• allows pi to obtain an atomic value of REG[1..m]

THE communication abstraction for read/write registers 29

Algorithm: write operation

operation write(r, v) by pi is
donei ← false;
scd broadcast SYNC (i);
wait(donei); % end of synchronization 1
donei ← false;
scd broadcast WRITE (r, v, 〈tsai[r].date+1, i〉);
wait(donei). % end of synchronization 2

THE communication abstraction for read/write registers 30

Algorithm: snapshot operation

when the message set
{WRITE(rj1, vj1, 〈datej1, j1〉), · · · , WRITE(rjx, vjx, 〈datejx, jx〉),
SYNC(jx+1), · · · , SYNC(jy) } is scd-delivered do

for each r such that WRITE(r,−,−) ∈ the message set do
let 〈date, writer〉 = greatest timestamp in WRITE(r,−,−);
if (tsai[r] <ts 〈date, writer〉)

then let v the value in WRITE(r,−, 〈date, writer〉);
regi[r]← v; tsai[r]← 〈date, writer〉

end if
end for;
if ∃ ℓ : jℓ = i then donei ← true end if.

Observation: no quorum at this abstraction level!

THE communication abstraction for read/write registers 31

The case of a sequentially consistent snapshot object

Suppress the messages SYNC!

These messages ensure compliance wrt real-time

operation snapshot() by pi is
return(reg i[1..m]).

operation write(r, v) by pi is
donei← false;
scd broadcast WRITE (r, v, 〈tsai[r].date+1, i〉);
wait(donei).

when the message set
{WRITE(rj1, vj1, 〈datej1, j1〉), · · · , WRITE(rjx, vjx, 〈datejx, jx〉)}
is scd-delivered do

THE communication abstraction for read/write registers 32

From MWMR Snapshot

to SCD-Broadcast

Building SCD-Broadcast

in CARWn,t[Snapshot] (CARWn,t[∅])

THE communication abstraction for read/write registers 33

Shared objects

ǫ: empty sequence
⊕: concatenation

• SENT [1..n]: snapshot object, initialized to [∅, · · · , ∅]

SENT [i] = messages scd-broadcast by pi

• SETS SEQ[1..n]: snapshot object, initialized to [ǫ, · · · , ǫ]

SETS SEQ[i] = seq. of msg sets scd-delivered by pi

THE communication abstraction for read/write registers 34

Local objects

• sent i: local copy of the snapshot object SENT

• sets seqi: local copy of the snapshot object SETS SEQ.

• to deliveri : set whose aim is to contain the next message
set that pi has to scd-deliver

• members(set seq) returns the set of messages in set seq

THE communication abstraction for read/write registers 35

Algorithm (1)

operation scd broadcast(m) by pi is
sent i[i]← sent i[i] ∪ {m}; SENT .write(sent i[i]); progress().

background task T is
repeat forever progress() end repeat.

THE communication abstraction for read/write registers 36

Algorithm (2)

procedure progress() by pi is
enter mutex();
catch up();
sent i ← SENT .snapshot();
to deliveri ← (∪1≤j≤n senti[j]) \ members(sets seqi[i]);
if (to deliveri 6= ∅)

then sets seq i[i]← sets seqi[i]⊕ to deliveri ;
SETS SEQ .write(i, sets seqi[i]);
scd deliver(to deliveri)

end if;
exit mutex().

THE communication abstraction for read/write registers 37

Algorithm (3)

procedure catch up() by pi is
sets seqi← SETS SEQ .snapshot();
while
(∃j, set : set first set in sets seq i[j] ∧ set 6⊆ members(sets seqi[i])
do to deliveri ← set \ members(sets seqi[i]);

sets seqi[i]← sets seqi[i]⊕ to deliveri ;
SETS SEQ .write(i, sets seqi[i]);
scd deliver(to deliveri)

end while.

THE communication abstraction for read/write registers 38

From sequentially consistency to atomicity

From non-composable to composable snapshot objects

The power of the messages SYNC() (real-time compliance)

• Start from a sequentially consistent snapshot object
(CARWn,t[Snapshot])

• Build SCD-Broadcast on top of it

we obtain CAMPn,t[SCD-broadcast]

• Build atomic snapshot on top of CAMPn,t[SCD-broadcast]

First (?) systematic construction from SC to Atomicity

THE communication abstraction for read/write registers 39

On the implementation

of SCD-Broadcast

THE communication abstraction for read/write registers 40

Implementing SCD in CAMP{t < n/2}

operation scd broadcast(m) is
forward(m, i, sni, i, sni);
wait(∄ msg ∈ bufferi : msg.sd = i).

when the message forward(m, sd, snsd , f, snf) is fifo-delivered do % from pf
forward(m, sd, snsd , f, snf);
try deliver().

procedure forward(m, sd, snsd , f, snf) is
if (snsd > clocki[sd])

then if (∃ msg ∈ bufferi : msg.sd = sd ∧msg.sn = snsd)
then msg.cl[f]← snf
else threshold[1..n]← [∞, . . . ,∞]; threshold[f]← snf ;

let msg ← 〈m, sd, snsd , threshold[1..n]〉;
bufferi ← bufferi ∪ {msg};
fifo broadcast forward(m, sd, snsd , i, sni);
sni ← sni +1

end if
end if.

THE communication abstraction for read/write registers 41

Implementing SCD in CAMP{t < n/2} (Cont’d)

procedure try deliver() is
let to deliveri ← {msg ∈ bufferi : |{f : msg.cl[f] <∞}| > n

2
};

while (∃msg ∈ to deliveri,msg′ ∈ bufferi \ to deliveri : |{f : msg.cl[f] < msg′.cl[f]}| ≤ n
2
) do

to deliveri ← to deliveri \ {msg}
end while;
if (to deliveri 6= ∅)

then for each (msg ∈ to deliveri such that clocki[msg.sd] < msg.sn)
do clocki[msg.sd]← msg.sn end for;

bufferi ← bufferi \ to deliveri;
ms← {m : ∃ msg ∈ to deliveri : msg.m = m}; scd deliver(ms)

end if.

• As t < n/2 is necessary and sufficient to build read/write
registers in CAMPn,t[∅], it is also necessary ans sufficient
to build SCD-broadcast in CAMPn,t[∅]

• All the “technical details” are hidden in this algorithm
which is designed and proved once for all!

THE communication abstraction for read/write registers 42

Cost of SCD-broadcast implementation

• Assumption:

⋆ Let ∆ = message delay

⋆ Local computation: zero cost

• Cost:

⋆ Time: 2∆

⋆ Messages: n2

THE communication abstraction for read/write registers 43

Conclusion

THE communication abstraction for read/write registers 44

To summarize

Seq consistent or atomic

shared memory SCD-Broadcast

read/write or snapshot

Other applications:
lattice agreement, commutative operations, ...

THE communication abstraction for read/write registers 45

Conceptual issues

• Better understanding of basic mechanisms needed to
implement a read/write shared memory

• SCD-broadcast captures the “right” abstraction level

• Simplicity of the proposed (register/snapshot) algo.

• Genericity of the proposed algorithms wrt

⋆ read/write vs snapshot objects (same algorithms)

⋆ atomicity vs sequential consistency (SYNC msgs)

THE communication abstraction for read/write registers 46

More important: He Told me

“Algorithms are at the core of Informatics”

THE communication abstraction for read/write registers 47

