Title: Reinforcement Learning Through a Probabilistic Lens

Abstract: This talk introduces machine learning fundamentals through their probabilistic foundations, emphasizing connections between maximum likelihood estimation, loss functions, and neural networks. We will then explore core principles of reinforcement learning: from Markov Decision Processes and value functions to algorithms like Q-learning, DQN, and PPO. The presentation concludes with recent developments of RL to large language models and preference optimization.

Dates

March 1st, 2025 → March 15th, 2025

Abstract submission deadline

March 8th, 2025 → March 15th, 2025

Paper submission deadline

April 14th ,2025

Accept/Reject notification

May 21-23 ,2025

Netys Conference

Proceedings

Revised selected papers will be published as a post-proceedings in Springer's LNCS "Lecture Notes in Computer Science"

Partners & Sponsors (TBA)