Title: Reinforcement Learning Through a Probabilistic Lens
Abstract: This talk introduces machine learning fundamentals through their probabilistic foundations, emphasizing connections between maximum likelihood estimation, loss functions, and neural networks. We will then explore core principles of reinforcement learning: from Markov Decision Processes and value functions to algorithms like Q-learning, DQN, and PPO. The presentation concludes with recent developments of RL to large language models and preference optimization.
Dates
March 1st, 2025 → March 15th, 2025
Abstract submission deadline
March 8th, 2025 → March 15th, 2025
Paper submission deadline
April 14th ,2025
Accept/Reject notification
May 21-23 ,2025
Netys Conference